Sharp measure contraction property for generalized H-type Carnot groups - Archive ouverte HAL
Article Dans Une Revue Communications in Contemporary Mathematics Année : 2018

Sharp measure contraction property for generalized H-type Carnot groups

Luca Rizzi

Résumé

We prove that H-type Carnot groups of rank k and dimension n satisfy the MCP(K, N) if and only if K ≤ 0 and N ≥ k + 3(n − k). The latter integer coincides with the geodesic dimension of the Carnot group. The same result holds true for the larger class of generalized H-type Carnot groups introduced in this paper, and for which we compute explicitly the optimal synthesis. This constitutes the largest class of Carnot groups for which the curvature exponent coincides with the geodesic dimension. We stress that generalized H-type Carnot groups have step 2, include all corank 1 groups and, in general, admit abnormal minimizing curves. As a corollary, we prove the absolute continuity of the Wasserstein geodesics for the quadratic cost on all generalized H-type Carnot groups.
Fichier principal
Vignette du fichier
MCP-Htype-v4 (1).pdf (485.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01468967 , version 1 (16-02-2017)
hal-01468967 , version 2 (06-11-2017)

Identifiants

Citer

Davide Barilari, Luca Rizzi. Sharp measure contraction property for generalized H-type Carnot groups. Communications in Contemporary Mathematics, 2018, 20 (6), ⟨10.1142/S021919971750081X⟩. ⟨hal-01468967v2⟩
177 Consultations
152 Téléchargements

Altmetric

Partager

More