A Multi-scale Hybrid High-Order method - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

A Multi-scale Hybrid High-Order method

Résumé

We devise a multi-scale Hybrid High-Order (HHO) method. The method hinges on (hybrid) discrete unknowns that are polynomials attached to mesh elements and faces, and on a multi-scale reconstruction operator, that maps onto a fine-scale space spanned by oscillatory basis functions. The method handles arbitrary orders of approximation k >= 0, and is applicable on general meshes. For face-based unknowns that are polynomials of degree k, we devise two versions of the method, depending on the polynomial degree (k - 1) or k of cell-based unknowns. We prove, in the case of periodic coefficients, an energy-error estimate of the form (ε^(1/2) + H^(k+1) + ε^(1/2)H^(-1/2)).
Fichier principal
Vignette du fichier
MsHHO.pdf (576.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01467434 , version 1 (14-02-2017)
hal-01467434 , version 2 (14-09-2017)
hal-01467434 , version 3 (15-02-2018)

Identifiants

  • HAL Id : hal-01467434 , version 1

Citer

Matteo Cicuttin, Alexandre Ern, Simon Lemaire. A Multi-scale Hybrid High-Order method. 2017. ⟨hal-01467434v1⟩
1168 Consultations
315 Téléchargements

Partager

More