Communication Dans Un Congrès Année : 2016

Adaptive Mean Shift Based Hemodynamic Brain Parcellation in fMRI

Résumé

One of the remaining challenges in event-related fMRI is to discriminate between the vascular response and the neural activity in the BOLD signal. This discrimination is done by identifying the hemodynamic territories which differ in their underlying dynamics. In the literature, many approaches have been proposed to estimate these underlying dynamics, which is also known as Hemodynamic Response Function (HRF). However, most of the proposed approaches depend on a prior information regarding the shape of the parcels (territories) and their number. In this paper, we propose a novel approach which relies on the adaptive mean shift algorithm for the parcellation of the brain. A variational inference is used to estimate the unknown variables while the mean shift is embedded within a variational expectation maximization (VEM) framework to allow for estimating the parcellation and the HRF profiles without having any prior information about the number of the parcels or their shape. Results on synthetic data confirms the ability of the proposed approach to estimate accurate HRF estimates and number of parcels. It also manages to discriminate between voxels in different parcels especially at the borders between these parcels. In real data experiment, the proposed approach manages to recover HRF estimates close to the canonical shape in the bilateral occipital cortex.
Fichier principal
Vignette du fichier
albughdadi_17178.pdf (656.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01466644 , version 1 (13-02-2017)

Identifiants

  • HAL Id : hal-01466644 , version 1

Citer

Mohanad Albughdadi, Lotfi Chaari, Jean-Yves Tourneret. Adaptive Mean Shift Based Hemodynamic Brain Parcellation in fMRI. 7th International Conference on Medical Imaging and Augmented Reality (MIAR 2016), Aug 2016, Bern, Switzerland. pp. 247-258. ⟨hal-01466644⟩
128 Consultations
94 Téléchargements

Partager

More