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Adaptive Mean Shift Based Hemodynamic Brain

Parcellation in fMRI

Mohanad Albughdadi1, Lotfi Chaari1 and Jean-Yves Tourneret1 ⋆

1 University of Toulouse, IRIT,INP-ENSEEIHT, France
firstname.lastname@enseeiht.fr

Abstract. One of the remaining challenges in event-related fMRI is to
discriminate between the vascular response and the neural activity in
the BOLD signal. This discrimination is done by identifying the hemo-
dynamic territories which differ in their underlying dynamics. In the
literature, many approaches have been proposed to estimate these under-
lying dynamics, which is also known as Hemodynamic Response Func-
tion (HRF). However, most of the proposed approaches depend on a
prior information regarding the shape of the parcels (territories) and
their number. In this paper, we propose a novel approach which relies
on the adaptive mean shift algorithm for the parcellation of the brain.
A variational inference is used to estimate the unknown variables while
the mean shift is embedded within a variational expectation maximiza-
tion (VEM) framework to allow for estimating the parcellation and the
HRF profiles without having any prior information about the number
of the parcels or their shape. Results on synthetic data confirms the
ability of the proposed approach to estimate accurate HRF estimates
and number of parcels. It also manages to discriminate between voxels
in different parcels especially at the borders between these parcels. In
real data experiment, the proposed approach manages to recover HRF
estimates close to the canonical shape in the bilateral occipital cortex.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a powerful non-invasive imag-
ining technique to indirectly measure neural activity from the blood-oxygen-level
dependent (BOLD) signal [1]. fMRI data analysis relies on two main task; the
detection of activation in brain areas after a given stimulus and the estimation
of the underlying dynamics of the brain which is also called as the hemodynamic
response function (HRF). Many attempts to describe the link between stimuli
and the induced BOLD signal have been proposed. The basic model is the so-
called general linear model (GLM). In this model, the link between the stimuli
and the induced BOLD signal is modelled as a convolution between the HRF
and the binary stimulus sequence. However, this model considers a fixed HRF
shape [2,3]. Many extensions have been proposed to account for the variability of

⋆ The authors would like to thank Dr. Philippe Ciuciu for providing them with the
real data used for validation.
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the HRF by using more regressors [4–7] which leads to less reliability in the de-
tection task. Other approaches depending on physiologically-informed non-linear
models (like the Balloon model) have been used to recover the hemodynamics
in brain areas where activation has already been detected [5, 8–10]. However,
these approaches are computationally intensive for a whole brain analysis and
the presence of noise causes some identifiability issues.
The detection of the evoked activity and the estimation of the dynamics have
been mainly addressed as two separate tasks while each of them depends on the
other. A precise localization of activations depends on a reliable HRF estimate,
while a robust HRF shape is only achievable in brain regions eliciting task-related
activity [11,12]. In this context, the joint detection estimation (JDE) model per-
forms both tasks simultaneously [13–15]. In the JDE model, a single HRF shape
is considered for a specific parcel (group of voxels). Although the JDE model
jointly detects the evoked activity within the brain and estimates the HRF,
it still requires a prior parcellation of the brain into functionally homogeneous
regions. This challenge motivated the development of the joint parcellation de-
tection estimation (JPDE) model [16,17] that performs online parcellation along
with the detection and estimation tasks by setting voxels that share the same
HRF pattern in the same HRF group (parcel). The JPDE model can be inferred
using the VEM algorithm. However, this model still requires manual settings
of the number of parcels. To overcome this issue, a model selection procedure
was proposed in [18] to select the optimum number of parcels. This procedure
depends mainly on free energy calculations where the model that maximizes the
free energy is the best fit for the data. The limitation of this procedure arises
from the fact that it needs to be run for each candidate model which can be time
consuming especially if no prior information exists about the number of parcels.
The standard JPDE model has been adopted in a Bayesian non-parametric ap-
proach [19] by making use of the Dirichlet process mixtures model combined
with a hidden Markov random field to automatically infer the number of parcels
and their shapes simultaneously with the estimation and detection tasks.
In this paper, a new approach is proposed to estimate the number of parcels from
the fMRI BOLD signal. More precisely, we propose to embed the adaptive mean
shift algorithm (which is a common clustering algorithm) within the variational
inference framework associated with the JPDE model to estimate the parcels
and their corresponding HRF profiles.
The rest of the paper is organized as follows. The JPDE model is summarized in
Section 2. The adaptive mean shift (AMS) algorithm is illustrated in Section 3.
The inference strategy of the AMS-JPDE (for adaptive mean shift with JPDE
model) model is described in Section 4 along with the use of the AMS algorithm
within the VEM framework. Experimental validation on synthetic and real fMRI
data is presented in Section 5. Finally, conclusion and future work are drawn in
Section 6.
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2 The JPDE model

The adopted JPDE model is the one proposed in [16, 17]. Let P be the set of
voxels (J voxels) and yj ∈ R

N the fMRI time series for the voxel j at times
{tn, n = 1, . . . , N}, where tn = nTR, N is the number of scans and TR is
the repetition time. The BOLD time series is denoted as Y = {yj , j ∈ P}.
M different experimental conditions are considered. The model assumes that
the HRFs are voxel-dependent and the whole set is denoted as H = {hj , j ∈
P} with hj ∈ R

D. Each hj is associated with one among K considered HRF
groups (parcels). A set of hidden variables z = {zj , j ∈ P} is used to encode
these groups where zj ∈ {1, . . . ,K} and z follows a K-class Potts model with
interaction parameter βz to account for spatial connexity. In the group #k and
voxel #j, the HRF hj is a stochastic perturbation of an HRF pattern h̄k such
that hj ∼ N (h̄k, νkID), where νk is a parameter which controls the stochastic
perturbations around h̄k and ID is the identity matrix of size D ×D. Smooth
HRF patterns are forced by assigning them the prior h̄k ∼ N (0, σ2

hR) where

R = (∆t)4 (Dt
2D2)

−1
, ∆t < TR is the sampling period of the unknown HRFs

and D2 is the second order finite difference matrix. The following observation
model is considered

∀j ∈ P , yj =
M∑

m=1

amj Xmhj + P ℓj + εj , (1)

where the low frequency drifts are denoted by P ℓj and Xm = {xn−d∆t
m , n =

1, . . . , N, d = 0, . . . , D − 1} is a binary matrix that provides information on
the stimulus occurrences for the mth experimental condition. The neural re-
sponse levels (NRL) are denoted by A = {am,m = 1, . . . ,M} with am ={
amj , j ∈ P

}
. The amplitudes am’s follow spatial Gaussian mixtures defined by

a set of parameters θa and governed by binary Markov fields. More specifically,
each NRL is assigned to one of the activation classes encoded by the variables
Q = {qm,m = 1, . . . ,M} where qm =

{
qmj , j ∈ P

}
is a binary Markov field with

interaction parameter βm distributed according to an exponential distribution
with parameter λm. Two classes are considered; (qmj = 1) if voxel j is activated
by condition #m and (qmj = 0) otherwise. An additive Gaussian noise εj is con-

sidered with covariance matrix Γ−1
j . The set of all parameters is denoted as Θ =

{L,Γ ,θa,ν,λ, σ
2
h, h̄,β, βz } where Γ = {Γ j , j ∈ P},ν = {νk, k = 1, . . . ,K},

β = {βm,m = 1, . . . ,M} and h̄ =
(
h̄k

)
1≤k≤K

. More details about the meaning

of these parameters are available in [16, 17].
A variational approach was proposed in [16, 17] to approximate the posterior
of the JPDE model as the product of simple distributions. More precisely, the
posterior of the JPDE model was approximated as

p̃(A,H,Q, z |Y ) = p̃A(A)p̃H(H)p̃Q(Q)p̃z(z). (2)

The inference was carried out in two parts: the expectation step which was
divided into four main steps to compute approximate posteriors of the variables
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{A,H,Q, z}, and the maximization step to estimate the unknown parameters.
The interested reader can refer to [16, 17] for further details.

3 Adaptive Mean Shift algorithm

Mean shift is a feature space analysis algorithm which has been widely used for
computer vision tasks. Feature space analysis is used to reduce the data to sets
of significant features which is also known as clustering or classification. This
algorithm is a robust clustering technique which does not require setting the
number of clusters. It is an iterative algorithm that estimates the modes of a
multivariate distribution underlying the feature space. The number of clusters is
obtained automatically by estimating centres of these clusters [20]. Dense regions
presented in the feature space correspond to the modes (local maxima) of the
probability density function (pdf) of the observed data. Each data point is asso-
ciated with the nearby peak of the pdf. The mean shift defines a window (kernel)
around each data point and then computes its mean. The center of the window
is shifted to the mean in an iterative procedure until convergence. The mean
shift algorithm relies on kernel density estimation which is a non-parametric ap-
proach to estimate the pdf of a random variable. Akin to [21], with a kernel K,
each hj ∈ R

D is associated with a bandwidth value wj that defines the radius
of the kernel. Since the set H = {hj , j ∈ P} is not available, we will use the set
of HRF estimates mH = {mHj

, j = 1, . . . , J} as in [16, 17]. The kernel density
estimator at point mHx

can be defined as

f̂K(mHx
) =

1

J

J∑

j=1

1

wD
j

k

(∥∥∥∥
mHx

−mHj

wj

∥∥∥∥
2

2

)
, (3)

where k(x) is the profile of the spherically symmetric kernel K satisfying

K(x) = ck,Dk(‖x‖22) > 0 ; ‖x‖2 ≤ 1. (4)

The normalization constant ck,D ensures that the kernel K(x) integrates to
one. Whenever the derivative of the kernel profile k(x) exists, we can define a
function g(x) = −k′(x). Using g(x) as a profile, a kernel G(x) can be defined as

G(x) = cg,Dg(‖x‖22). Applying the gradient to (3), we can obtain the following
result (see [20] for more details)

SG(mHx
) = C

∇̂fK(mHx
)

f̂G(mHx
)
, (5)

where ∇̂fK(x) is the gradient density estimator. In (5), C is a positive constant
and SG(mHx

) is the mean shift vector which can be rewritten as

SG(mHx
) =

J∑
j=1

1
w

D+2
j

mHj
g

(∥∥∥mHx−mHj

wj

∥∥∥
2

2

)

J∑
j=1

1
w

D+2
j

g

(∥∥∥mHx−mHj

wj

∥∥∥
2

2

) −mHx
. (6)
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The mean shift vector will always move toward the maximum increase of the
density [20]. This is due to the fact that at location mHx

, the weighted mean of
the data points with kernel G is proportional to the normalized density gradient
estimate with kernel K (see (5)). The stationary points obtained via a gradient
ascent method represent the modes of the density function and all the points
associated with the same stationary point belong to the same cluster. Let us
define {Bl}l=1,2,... as the sequence of successive locations of kernel G. Using (6),
we can write

Bl+1 =

J∑
j=1

1
w

D+2
j

mHj
g

(∥∥∥mHl
−mHj

wj

∥∥∥
2

2

)

J∑
j=1

1
w

D+2
j

g

(∥∥∥mHl
−mHj

wj

∥∥∥
2

2

) l = 1, 2, . . . . (7)

Eq. (7) is one of the properties of the mean shift: it is nothing but a hill climbing
iterative procedure until the density gradient vanishes. After the convergence of
this iterative procedure, we will obtain the local maxima of the density (modes).
To overcome the problem of setting an optimal global bandwidth, wj is estimated
using an ℓ1 norm as in [21]. Assuming that mHj,k

is the k-nearest neighbour of
the point mHj

, the bandwidth associated with mHj
can be computed as follows

wj =
∥∥mHj

−mHj,k

∥∥
1
. (8)

After convergence of this procedure, the estimated modes are the HRF estimates
of the parcels (see [20] for more details). The practical algorithm for mode de-
tection can be summarized in two main steps; 1) run the AMS algorithm to find

stationary points of f̂K ; 2) keep only the local maxima of these points.

4 AMS within the VEM framework of the JPDE model

The AMS-JPDE model relies on the VEM algorithm for inference as in the
standard JPDE model. However, modifications have to be carried out to embed
the AMS algorithm within the VEM framework. The hierarchy of the classical
JPDE model is slightly modified: no spatial prior is imposed over the HRF group
assignment labels z. The posterior distribution in (2) is factorized as a product of
pdfs of the missing variables yielding four different expectation steps (VE-A, VE-
H, VE-Z and VE-Q). In the context of the AMS-JPDE model, the expectation
over z is different compared to the standard JPDE model while the rest of the
expectation steps (VE-A, VE-Q and VE-H) remains the same (see [16, 17]).

– VE-A step: This step is exactly the same as in [16,17]. It reads as follows

p̃
(r)
A (A) ∝ exp

(
E
p̃
(r)
H

p̃
(r−1)
Q

[
log p(A |Y ,H,Q;Θ(r−1))

])
. (9)

– VE-Q step: It corresponds to the same VE-Q step in [16,17]

p̃
(r)
Q (Q) ∝ exp

(
E
p̃
(r)
A

[
log p(Q |Y ,A;Θ(r−1))

])
. (10)



6

– VE-H step: As in the JPDE model, the VE-H step is

p̃
(r)
H (H) ∝ exp

(
E
p̃
(r−1)
A

p̃
(r−1)
z

[
log p(H |Y ,A, z;Θ(r−1)

])
. (11)

– VE-Z step: This step is similar to the VE-Z step in the standard JPDE
model [16, 17]. Neglecting the term that comes from the spatial prior over
the labels z, p̃zj can be rewritten as follows

p̃(r)zj
(k) ∝ N

(
m

(r)
Hj

; h̄
(r−1)
k , Σ̄

(r−1)
k

)
,

∝ exp

(
−

(
m

(r)
Hj

− h̄
(r−1)
k

)t

Σ̄
−1
k

(
m

(r)
Hj

− h̄
(r−1)
k

))
, (12)

where h̄ =
(
h̄
(r−1)
k

)

1≤k≤K
are the modes of the parcels (HRF patterns)

obtained by the AMS algorithm in the maximization step at iteration (r−1).
– M-Step: In the maximization step, the HRF profiles corresponding to the
estimated parcels are obtained using the AMS algorithm while the maxi-
mization of the rest of the parameters remains the same as in the standard
JPDE model. The corresponding M-step for the AMS-JPDE model reads

Θ(r) = argmax
Θ

[
E
p̃
(r)
A

p̃
(r)
H

p̃
(r)
Q

p̃
(r)
z

[
log p (Y ,A,H,Q, z;Θ)

]]
. (13)

Eq. (13) can be rewritten as

Θ(r) = argmaxΘ

[
E
p̃
(r)
A

p̃
(r)
H

[
log p(Y | A,H;L,Γ )

]
+ E

p̃
(r)
A

p̃
(r)
Q

[
log p(A | Q;µ,v)

]

+E
p̃
(r)
Q

[
log p(Q;β)

]
+ E

p̃
(r)
H

p̃
(r)
z

[
log p(H | z; h̄,ν)

]]
.

(14)
The term E

p̃
(r)
H

p̃
(r)
z

[
log p(H | z; h̄,ν)

]
is associated with the maximization of

h̄ and is replaced by the AMS algorithm (see Section 3 for more details).
In the standard JPDE model, the smoothness of

(
h̄k

)
1≤k≤K

is favoured

by controlling their second order derivatives with the following prior: h̄k ∼
N

(
0, σ2

hR
)
. In the AMS-JPDE model, we rely on a weighted least squares

regularization for smoothness. A smooth h̄k that approximates the non-
smooth one h̄0

k (the output of the AMS algorithm) can be obtained by solving
the following problem

argmin
h̄k

||h̄0
k − h̄k||

2
2 + λh||D2h̄k||

2
2, (15)

where λh is a parameter to be fixed by the user and D2 is the second or-
der finite difference matrix. In the above expression, minimizing ||h̄0

k − h̄k||
2
2

forces the smooth h̄k to be close to the non-smooth one h̄0
k. On the other

hand, minimizing the term ||D2h̄k||
2
2 favours the smoothness of h̄k. Straight-

forward computations lead to the following expression of h̄k minimizing (15)

h̄k =
(
ID + λhD

t
2D2

)−1
h̄0
k. (16)

Note that such a quadratic regularization is equivalent to fixing a Gaussian
prior on h̄k in the hierarchical Bayesian model.
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5 Experimental validation

To validate the AMS based parcellation with the JPDE model, we have per-
formed numerical experiments on both synthetic and real data 1.

5.1 Synthetic fMRI time series

The proposed model was validated on four different experiments denoted as
Exps. 1-4 and defined by different parcellation masks (see Fig. 1)[top row] to
generate the BOLD signal according to (1). As regards the experimental condi-

Exp. 1 Exp. 2 Exp. 3 Exp. 4

R
P

E
P

Fig. 1: Reference parcellations (RP) used for the 4 experiments and corresponding
estimated parcellation (EP) (grid size = 20× 20).

tions, we consider here two of them (M = 2) with 30 trials for each. The reference
binary labels are shown in Fig. 2(left column). The NRLs are simulated from
their prior conditionally to the activation labels Q as shown in Fig. 2(right col-
umn). Given these 20 × 20 binary labels, the NRLs were simulated as follows,
for m = 0, 1: amj | qmj = 0 ∼ N (0, 0.5) and amj | qmj = 1 ∼ N (3.2, 0.5). The inter
stimuli interval and variance to generate the onsets of the trials were 3 s and 5 s,
respectively. Finally, the fMRI time series yj were generated according to (1)
with ∆t = 0.5 and TR = 1 s.
We analyzed the generated fMRI time series for the four experiments using the
AMS-JPDE model. The parcellation estimates for each experiment is shown in
Fig. 1[bottom row]. It is worth noticing that for the AMS-JPDE, no prior ini-
tialization for the parcellation or truncation level for the maximum number of
parcels is needed. The number of K-nearest neighbours (KNN ) is the only pa-
rameter that needs to be manually set. For the synthetic data experiments, we
set KNN = 50. The computed parcellation errors between the reference and the
estimated parcellation is 2.25%, 3.25%, 4.5% and 4.75% for Exps. 1 to 4, respec-
tively. These results show a good ability of the AMS-JPDE to recover the hemo-
dynamic territories with low error probability. Moreover, for each experiment, we

1 These experiments were implemented in Python within the framework offered by
the Pyhrf software [22].
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q a

m = 1

m = 2

Fig. 2: Reference activation labels (left column) and reference NRLs (right column) for
the two experimental conditions (grid size = 20× 20).

computed the confusion matrix between the reference and the estimated parcel-
lation. The results displayed in Tables. 1 and 2 show a major intersection between
them. Although some voxels were misclassified (since no spatial constraints are
imposed over the parcellation step), the AMS-JPDE model managed to establish
a good parcellation especially for those voxels located on the borders between
parcels. The results of the AMS-JPDE model were coherent with the results of
the model selection procedure in [18] that calculates the free energy of different
competing models each with Kω parcels and Kω = ω + 1, ω ∈ {1, . . . , 3}. The
models maximizing the free energy are the best fit for the data. These optimal
models lead to two parcels for Exp. 1 and 2 and three parcels for Exp. 3 and
4. Regarding the running time of the algorithm and considering Exp. 4 as an
example, using the model selection procedure in [18] the accumulated time re-
quired to run the 3 competing models is around 35 mins. On the other hand, the
AMS-JPDE model takes less than 12 mins. Thus, the computational time of the
AMS-JPDE is reduced compared to free energy calculations of the competing
models. Fig. 3 shows the transformed voxel-dependent HRFs in 3-D representa-
tion using Principal Component Analysis (PCA) with the HRF groups labels for
each experiment. We also explored the ability of the AMS-JPDE model to esti-
mate the HRF profiles for the estimated parcels, as shown in Fig. 4. The modes
of the parcels are the outputs of the AMS algorithm and here they represent
the HRF estimate for each parcel. These results are close to the ground truth.
The AMS-JPDE also managed to obtain a good performance in detecting the
activation as in the JPDE model. The mean square error (MSE) was computed
for each experimental condition in the four experiments. The average MSEs for
the estimated NRLs and labels were 0.006 and 0.004, respectively.

5.2 Real data

One experiment was conducted on real fMRI data to validate the AMS-JPDE
model. The considered region of interest (ROI) is the bilateral occipital cortex.
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Table 1: Confusion matrices for Exps. 1 and 2. RP and EP refer to the reference and
the estimated parcellations, respectively.

❍
❍

❍
❍❍

RP
EP Parcel. 1 Parcel. 2

Exp. 1 Exp. 2 Exp. 1 Exp. 2

Parcel. 1 0.98 0.98 0.03 0.05
Parcel. 2 0.02 0.02 0.97 0.95

Table 2: Confusion matrices for Exps. 3 and 4. RP and EP refer to the reference and
the estimated parcellations, respectively.

❍
❍
❍

❍❍
RP

EP Parcel. 1 Parcel. 2 Parcel. 3
Exp. 3 Exp. 4 Exp. 3 Exp. 4 Exp. 3 Exp. 4

Parcel. 1 0.93 0.94 0.02 0.01 0.01 0.02
Parcel. 2 0.05 0.01 0.96 0.96 0.02 0.02
Parcel. 3 0.02 0.05 0.02 0.03 0.97 0.96

(a) Exp. 1 (b) Exp. 2

(c) Exp. 3 (d) Exp. 4

Fig. 3: Transformed voxel-dependent HRFs in 3-D representation using PCA with HRF
groups labels.
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(a) Exp. 1 (b) Exp. 2

(c) Exp. 3 (d) Exp. 4

Fig. 4: HRF estimates for the synthetic data experiments.

The fMRI data were collected using a gradient-echo EPI sequence (TE = 30
ms/TR = 2.4 s /thickness = 3 mm/ FOV = 192×192 mm2, matrix size: 96×96)
with a 3 Tesla magnetic field during a localizer experiment. Sixty auditory, visual
and motor stimuli were involved in the paradigm and defined in ten experimental
conditions (M = 10). During the experiment, N = 128 scans were acquired and
∆t = 0.6 s. The number of K-nearest neighbours was set to KNN = 50. Running
this experiment using the AMS-JPDE model, 3 parcels were estimated as shown
in Fig. 5. The corresponding HRF shape estimates are shown in Fig. 6. The
computed time to peak (TTP) for the HRF estimates was 5.4 s for all of them
while the full width at half maximum (FWHM) was 4.2 s for parcels 1 and 3
and 4.8 s for parcel 2. The obtained results are coherent with the conclusion
that the HRF estimates in the bilateral occipital cortex should be consistent
with the canonical shape [19, 23]. To verify these results, we also ran the JPDE
model with the model selection procedure proposed in [18] on the same fMRI
data using three candidate models with one, two and three parcels for initial
parcellation. The candidate model maximizing the free energy was the one with
three parcels and the reported value was −236604. This result is also coherent
with our findings using the AMS-JPDE model.

Fig. 5: The estimated parcellation in the bilateral occipital cortex.
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Fig. 6: HRF shape estimates using the AMS-JPDE model in the bilateral occipital
cortex and the canonical HRF.

6 Conclusion and future work

This paper proposed a new approach for automatic hemodynamic brain parcella-
tion relying on the existing JPDE model and the adaptive mean shift algorithm
yielding the so-called AMS-JPDE model. The AMS algorithm is used within
the VEM framework of the JPDE model to formulate it as a non-parametric
approach for model selection. In contrast with the standard JPDE model, the
AMS-JPDE model requires no prior initialization for the parcellation as the
HRF estimates are the modes obtained by the AMS algorithm of the underlying
multivariate distribution of the voxel-dependent HRFs. Future work will focus
on embedding spatial prior in the AMS algorithm to eliminate outlier voxels in
the parcellation estimates.

References

1. S. Ogawa, T.-M. Lee, A. R. Kay, and D. W. Tank, “Brain magnetic resonance
imaging with contrast dependent on blood oxygenation,” in Proc. Natl. Acad.

Sci., vol. 87, no. 24, pp. 9868–72, 1990.

2. K. J. Friston, A. P. Holmes, J.-B. Poline, P. J. Grasby, S. C. R. Williams, R. S. J.
Frackowiak, and R. Turner, “Analysis of fMRI time-series revisited,” Neuroimage,
vol. 2, no. 1, pp. 45–53, 1995.

3. G. M. Boynton, S. A. Engel, G. H. Glover, and D. J. Heeger, “Linear systems
analysis of functional magnetic resonance imaging in human v1,” The Journal of

Neuroscience, vol. 16, no. 13, pp. 4207–4221, 1996.

4. G. H. Glover, “Deconvolution of impulse response in event-related BOLD fMRI,”
Neuroimage, vol. 9, no. 4, pp. 416–429, 1999.

5. K. J. Friston, A. Mechelli, R. Turner, and C. J. Price, “Nonlinear responses in
fMRI: the Balloon model, Volterra kernels, and other hemodynamics,” Neuroim-

age, vol. 12, no. 4, pp. 466–477, 2000.

6. R. N. A. Henson, M. D. Rugg, and K. J. Friston, “The choice of basis functions
in event-related fMRI,” Neuroimage, vol. 13, no. 6, pp. 149, 2001.

7. M. A. Lindquist, J. M. Loh, L. Y. Atlas, and T. D. Wager, “Modeling the hemody-
namic response function in fMRI: efficiency, bias and mis-modeling,” Neuroimage,
vol. 45, no. 1, pp. S187–S198, 2009.



12

8. R. B. Buxton and L. Frank, “A model for the coupling between cerebral blood
flow and oxygen metabolism during neural stimulation,” Journal of Cerebral Blood

Flow & Metabolism, vol. 17, no. 1, pp. 64–72, 1997.
9. J. J. Riera, J. Watanabe, I. Kazuki, M. Naoki, E. Aubert, T. Ozaki, and

R. Kawashima, “A state-space model of the hemodynamic approach: nonlinear
filtering of BOLD signals,” Neuroimage, vol. 21, no. 2, pp. 547–567, 2004.

10. T. Deneux and O. Faugeras, “Using nonlinear models in fMRI data analysis: model
selection and activation detection,” Neuroimage, vol. 32, no. 4, pp. 1669–1689,
2006.

11. J. Kershaw, B. A. Ardekani, and I. Kanno, “Application of Bayesian inference to
fMRI data analysis,” IEEE Trans. Med. Imag., vol. 18, no. 12, pp. 1138–1153,
1999.

12. P Ciuciu, J.B. Poline, G. Marrelec, J. Idier, Ch. Pallier, and H. Benali, “Unsuper-
vised robust non-parametric estimation of the hemodynamic response function for
any fMRI experiment,” IEEE Trans. Med. Imag., vol. 22, no. 10, pp. 1235–1251,
Oct 2003.

13. S. Makni, J. Idier, T. Vincent, B. Thirion, G. Dehaene-Lambertz, and P. Ciuciu, “A
fully Bayesian approach to the parcel-based detection-estimation of brain activity
in fMRI,” Neuroimage, vol. 41, no. 3, pp. 941–969, 2008.

14. T. Vincent, L. Risser, and P. Ciuciu, “Spatially adaptive mixture modeling for
analysis of fMRI time series,” IEEE Trans. Med. Imag., vol. 29, no. 4, pp. 1059–
1074, 2010.

15. L. Chaari, T. Vincent, F. Forbes, M. Dojat, and P. Ciuciu, “Fast joint detection-
estimation of evoked brain activity in event-related fMRI using a variational ap-
proach,” IEEE Trans. Med. Imag., vol. 32, no. 5, pp. 821–837, 2013.

16. L. Chaari, F. Forbes, T. Vincent, and P. Ciuciu, “Hemodynamic-informed par-
cellation of fMRI data in a variational joint detection estimation framework,” in
Medical Image Computing and Computer-Assisted Intervention, N. Ayache et al.,
Ed. 2012, vol. 7512, pp. 180–188, Springer.

17. L. Chaari, S. Badillo, T. Vincent, G. Dehaene-Lambertz, F. Forbes, and P. Ciuciu,
“Subject-level Joint Parcellation-Detection-Estimation in fMRI,” https://hal.

inria.fr/hal-01255465/file/JPDE_CHAARI_submitted06012016.pdf, Jan. 2016.
18. M. Albughdadi, L. Chaari, F. Forbes, J.-Y. Tourneret, and P. Ciuciu, “Model se-

lection for hemodynamic brain parcellation in fMRI,” in Proc. EUSIPCO, Lisbon,
Portugal, Sept 2014, pp. 31–35.

19. M. Albughdadi, L. Chaari, J.-Y. Tourneret, F. Forbes, and P. Ciuciu, “Hemody-
namic Brain Parcellation Using A Non-Parametric Bayesian Approach,” https:

//hal.inria.fr/hal-01275622/file/albugdhadi_paper.pdf, Feb. 2016.
20. D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space

analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619,
2002.

21. B. Georgescu, I. Shimshoni, and P. Meer, “Mean shift based clustering in high
dimensions: A texture classification example,” in Proc. ICCV, Nice, France, 2003,
IEEE, pp. 456–463.

22. T. Vincent, S. Badillo, L. Risser, L. Chaari, C. Bakhous, F. Forbes, and P. Ciuciu,
“Flexible multivariate hemodynamics fMRI data analyses and simulations with
PyHRF,” Frontiers in Neuroscience, vol. 8, no. 67, 2014.

23. S. Badillo, T. Vincent, and P. Ciuciu, “Group-level impacts of within- and between-
subject hemodynamic variability in fMRI,” Neuroimage, vol. 82, pp. 433–448, 15
Nov. 2013.


