Beauville-Voisin Conjecture for Generalized Kummer Varieties
Résumé
Inspired by their results on the Chow rings of projective K3 surfaces, Beauville and Voisin made the following conjecture: given a projective hyperkählerhyperk¨hyperkähler manifold, for any algebraic cycle that is a polynomial with rational coefficients of Chern classes of the tangent bundle and line bundles, it is rationally equivalent to zero if and only if it is numerically equivalent to zero. In this paper, we prove the Beauville–Voisin conjecture for generalized Kummer varieties.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...