Beauville-Voisin Conjecture for Generalized Kummer Varieties - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2014

Beauville-Voisin Conjecture for Generalized Kummer Varieties

Lie Fu

Résumé

Inspired by their results on the Chow rings of projective K3 surfaces, Beauville and Voisin made the following conjecture: given a projective hyperkählerhyperk¨hyperkähler manifold, for any algebraic cycle that is a polynomial with rational coefficients of Chern classes of the tangent bundle and line bundles, it is rationally equivalent to zero if and only if it is numerically equivalent to zero. In this paper, we prove the Beauville–Voisin conjecture for generalized Kummer varieties.
Fichier principal
Vignette du fichier
Beauville-VoisinConjecture.pdf (159.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01465216 , version 1 (01-12-2017)

Identifiants

Citer

Lie Fu. Beauville-Voisin Conjecture for Generalized Kummer Varieties. International Mathematics Research Notices, 2014, ⟨10.1093/imrn/rnu053⟩. ⟨hal-01465216⟩
40 Consultations
208 Téléchargements

Altmetric

Partager

More