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BEAUVILLE-VOISIN CONJECTURE FOR GENERALIZED KUMMER VARIETIES

LIE FU

Abstract. Inspired by their results on the Chow rings of projective K3 surfaces, Beauville and Voisin made the
following conjecture: given a projective hyperkähler manifold, for any algebraic cycle which is a polynomial
with rational coefficients of Chern classes of the tangent bundle and line bundles, it is rationally equivalent to
zero if and only if it is numerically equivalent to zero. In this paper, we prove the Beauville-Voisin conjecture
for generalized Kummer varieties.

1. Introduction

In [7], Beauville and Voisin observe the following property of the Chow rings of projective K3 sur-
faces.

Theorem 1.1 (Beauville-Voisin). Let S be a projective K3 surface. Then
(i) There is a well defined 0-cycle o ∈ CH0(S ), which is represented by any point on any rational curve on
S . It is called the canonical cycle.
(ii) For any two divisors D, D′, the intersection product D · D′ is proportional to the canonical cycle o in
CH0(S ).
(iii) c2(TS ) = 24o ∈ CH0(S ).
In particular, for any algebraic cycle which is a polynomial on Chern classes of the tangent bundle TS and
of line bundles on S , it is rationally equivalent to zero if and only if it is numerically equivalent to zero.

As is pointed out in their paper, the above result is surprising because CH0(S ) is very huge (‘infinite
dimensional’ in the sense of Mumford [21], cf. [24, Chapter 10]). In a subsequent paper [5], Beauville
proposed a conjectural explanation for Theorem 1.1 to put it into a larger picture. To explain his idea, let us
firstly recall the following notion generalizing K3 surfaces to higher dimensions. See for example [3], [16],
or [15] for a more detailed treatment.

Definition 1.2 (cf. [3]). A smooth projective complex variety X is called hyperkähler or irreducible holo-
morphic symplectic, if it is simply connected and H2,0(X) is 1-dimensional and generated by a holomorphic
2-form which is non-degenerate at each point of X. In particular, a hyperkähler variety has trivial canoncial
bundle.

Examples 1.3. Let us give some basic examples of projective hyperkähler manifolds:

• (Beauville [3]) Let S be a projective K3 surface and n ∈ N, then S [n], which is the Hilbert scheme
of subschemes of dimension 0 and length n, is hyperkähler of dimension 2n.
• (Beauville [3]) Let A be an abelian surface and n ∈ N. Let s : A[n+1] → A be the natural morphism

defined by the composition of the Hilbert-Chow morphism A[n+1] → A(n+1) and the summation
A(n+1) → A using the group law of A. It is clear that s is an isotrivial fibration. Then a fibre
Kn := s−1 (OA) is hyperkähler of dimension 2n, called generalized Kummer variety. The name is
justified by the fact that K1 is exactly the Kummer K3 surface associated to A.
• (Beauville-Donagi [6]) Let X ⊂ P5 be a smooth cubic fourfold, then its Fano variety of lines F(X) :={

l ∈ Gr
(
P1,P5

)
| l ⊂ X

}
is hyperkähler of dimension 4.
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As an attempt to understand Theorem 1.1 in a broader framework, Beauville gives the point of view in
[5] that we can regard this result as a ‘splitting property’ of the conjectural Bloch-Beilinson-Murre filtration
on Chow groups (see [1], [17]) for certain varieties with trivial canonical bundle. He suggests to verify
the following down-to-earth consequence of this conjectural splitting of the conjectural filtration on Chow
groups of hyperkähler varieties. As a first evidence, the special cases when X = S [2] or S [3] for a projective
K3 surface S are verified in his paper loc.cit.

Conjecture 1.4 (Beauville). Let X be a projective hyperkähler manifold, and z ∈ CH(X)Q be a polynomial
with Q-coefficients of the first Chern classes of line bundles on X. Then z is homologically trivial if and only
if z is (rationally equivalent to) zero.

Voisin pursues the work of Beauville and makes in [25] the following stronger version of Conjecture
1.4, by involving also the Chern classes of the tangent bundle:

Conjecture 1.5 (Beauville-Voisin). Let X be a projective hyperkähler manifold, and z ∈ CH(X)Q be a
polynomial with Q-coefficients of the first Chern classes of line bundles on X and the Chern classes of the
tangent bundle of X. Then z is numerically trivial if and only if z is (rationally equivalent to) zero.

Here we replaced ‘homologically trivial’ in the original statement in Voisin’s paper [25] by ‘numeri-
cally trivial’. But according to the standard conjecture [18], the homological equivalence and the numerical
equivalence are expected to coincide. We prefer to state the Beauville-Voisin conjecture in the above slightly
stronger form since our proof for generalized Kummer varieties also works in this generality.

In [25], Voisin proves Conjecture 1.5 for the Fano varieties of lines of cubic fourfolds, and for S [n]

if S is a projective K3 surface and n ≤ 2b2,tr + 4, where b2,tr is the second Betti number of S minus its
Picard number. We remark that here we indeed can replace the homological equivalence by the numerical
equivalence since the standard conjecture in these two cases has been verified by Charles and Markman [8].

The main result of this paper is to prove the Beauville-Voisin conjecture 1.5 for generalized Kummer
varieties.

Theorem 1.6. Let A be an abelian surface, n ≥ 1 be a natural number. Denote by Kn the generalized
Kummer variety associated to A (cf. Examples 1.3). Consider any algebraic cycle z ∈ CH(Kn)Q which is a
polynomial with rational coefficients of the first Chern classes of line bundles on Kn and the Chern classes
of the tangent bundle of Kn, then z is numerically trivial if and only if z is (rationally equivalent to) zero.

There are two key ingredients in the proof of the above theorem: on the one hand, as in [25], the result
of De Cataldo-Migliorini [10] recalled in Section 2 relates the Chow groups of A[n] to the Chow groups of
various products of A. On the other hand, a recent result on algebraic cycles on abelian varieties due to
Moonen [20] and O’Sullivan [23], which is explained in Section 3, allows us to upgrade a relation modulo
numerical equivalence to a relation modulo rational equivalence.

Convention: Throughout this paper, we work over the field of complex numbers. All Chow groups are
with rational coefficients CH := CH⊗Q. If A is an abelian variety, we denote by OA its origin and Pics(A)
its group of symmetric line bundles. For any smooth projective surface S , we denote by S [n] the Hilbert
scheme of subschemes of length n, which is a 2n-dimensional smooth projective variety by [13]. Finally, for
an algebraic variety X, the big diagonal ∆i j in a self-product Xn is the subvariety

{
(x1, · · · , xn) ∈ Xn | xi = x j

}
.

2. De Cataldo-Migliorini’s result

As mentioned above, a crucial ingredient for the proof of Theorem 1.6 will be the following result
due to De Cataldo and Migliorini. We state their result in the form adapted to our purpose.
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Let S be a projective surface, n ∈ N+ and P(n) be the set of partitions of n. For any such partition
µ = (µ1, · · · , µl), we denote by lµ := l its length. Define S µ := S lµ = S × · · · × S︸       ︷︷       ︸

lµ

, and also a natural

morphism from it to the symmetric product:

S µ
→ S (n)

(x1, · · · , xl) 7→ µ1 x1 + · · · + µl xl.

Now define Eµ :=
(
S [n] ×S (n) S µ

)
red

to be the reduced incidence variety inside S [n] × S µ. Then Eµ can be
viewed as a correspondence from S [n] to S µ, and we will write tEµ for the transpose correspondence, namely
the correspondence from S µ to S [n] defined by the same subvariety Eµ in the product. Let µ = (µ1, · · · , µl) =

1a12a2 · · · nan be a partition of n, we define mµ := (−1)n−l ∏l
j=1

µ j and cµ := 1
mµ

1
a1!···an! .

Theorem 2.1 (De Cataldo-Migliorini [10]). Let S be a projective surface, n ∈ N+. For each µ ∈ P(n), let
Eµ and tEµ be the correspondences defined above. Then the sum of the compositions∑

µ∈P(n)

cµ tEµ ◦ Eµ = ∆S [n]

is the identity correspondence of S [n], modulo rational equivalence. In particular,∑
µ∈P(n)

cµ E∗µ ◦ Eµ ∗ = idCH(S [n]) : CH(S [n])→ CH(S [n]).

Return to the case where S = A is an abelian surface. We view A[n+1] as a variety over A by the
natural summation morphism s : A[n+1] → A. Similarly, for each µ ∈P(n + 1) of length l, Aµ also admits a
natural morphism to A, namely, the weighted sum:

sµ : Aµ → A
(x1, · · · , xl) 7→ µ1 x1 + · · · + µl xl.

By definition, the correspondences Eµ, tEµ are compatible with morphisms s and sµ to A, i.e. the
following diagram commutes:

Eµ

||   

πµ

��

A[n+1]

s
""

Aµ

sµ
~~

A .

We point out that the three morphisms to A are all isotrivial fibrations: they become products after the

base change A
·n+1
−−−→ A given by multiplication by n + 1. Now let us take their fibres over the origin of A, or

equivalently, apply the base change i : Spec(C) = OA ↪→ A to the above commutative diagram, we obtain
the following correspondence, where Kn := s−1 (OA) is the generalized Kummer variety, Bµ is the possibly
non-connected abelian variety Bµ := ker

(
sµ : Aµ → A

)
, and Γµ := π−1

µ (OA).
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Γµ

xx &&
Kn

&&

Bµ

xx

OA = Spec(C) .

In the sequel, we sometimes view Eµ simply as an algebraic cycle in CH
(
A[n+1] × Aµ

)
and also by

definition Γµ = i! (Eµ) ∈ CH
(
Kn × Bµ

)
, where i! is the refined Gysin map defined in [14, Chapter 6]. We

need the following standard fact in intersection theory.

Lemma 2.2. For any γ ∈ CH
(
A[n+1]

)
, we have

Γµ ∗
(
γ|Kn

)
= (Eµ ∗(γ)) |Bµ in CH (Bµ) .

Similarly, for any β ∈ CH
(
Aµ

)
, we have

Γ∗µ
(
β|Bµ

)
=

(
E∗µ(β)

)
|Kn in CH (Kn) .

Proof. All squares are cartesian in the following commutative diagram.

Kn × Bµ
q′

//

p′

��

� w

))

Bµ

��

� w

**Kn //� w

))

OA �
w

i

**

A[n+1] × Aµ

p

��

q
// Aµ

sµ
��

A[n+1]
s

// A.

Now for any γ ∈ CH
(
A[n+1]

)
, we have

Γµ ∗
(
γ|Kn

)
= Γµ ∗

(
i!(γ)

)
(by [14, Theorem 6.2(c)], as s is isotrivial)

= q′∗
(
p′∗

(
i!(γ)

)
· i! (Eµ)

)
= q′∗

(
i!
(
p∗(γ)

)
· i! (Eµ)

)
(by [14, Theorem 6.2(b)])

= q′∗
(
i!
(
p∗(γ) · Eµ

))
= i!

(
q∗

(
p∗(γ) · Eµ

))
(by [14, Theorem 6.2(a)])

= i! (Eµ ∗(γ))
= (Eµ ∗(γ)) |Bµ (by [14, Theorem 6.2(c)], as sµ is isotrivial)

The proof of the second equality is completely analogous. �

Theorem 2.1 together with Lemma 2.2 implies the following
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Corollary 2.3. For each µ ∈ P(n + 1), let Γµ be the correspondences between Kn and Bµ defined above.
Then for any γ ∈ CH

(
A[n+1]

)
, we have∑

µ∈P(n+1)

cµΓ∗µ ◦ Γµ ∗(γ|Kn) = γ|Kn in CH(Kn),

where for a partition µ = (µ1, · · · , µl) = 1a12a2 · · · (n + 1)an+1 ∈ P(n + 1), the constant cµ is defined as
1

(−1)n+1−l ∏l
j=1

µ j
· 1

a1!···an+1! .

For later use, we now describe Bµ. Let d := gcd (µ1, · · · , µl), then Bµ has d4 isomorphic connected
components. We denote by B0

µ the identity component, which is a connected abelian variety; and the other
components are its torsion translations. More precisely, define the weighted sum homomorphism

sµ : Z⊕lµ → Z
(m1, · · · ,ml) 7→ µ1 m1 + · · · + µl ml,

whose image is clearly dZ. Let U be the kernel of sµ, which is a free abelian group of rank lµ − 1. Define
the reduced weighted sum

sµ : Z⊕lµ → Z

(m1, · · · ,ml) 7→
µ1

d
m1 + · · · +

µl

d
ml.

Then we have a short exact sequence of free abelian groups

(1) 0→ U → Z⊕lµ sµ
−→ Z→ 0.

By tensoring with A, we obtain a short exact sequence of abelian varieties

(2) 0→ B0
µ → Aµ

sµ
−→ A→ 0.

Since the short exact sequence (1) splits, so does the short exact sequence (2): B0
µ is a direct summand

of Aµ, thus we can choose a projection pµ : Aµ � B0
µ such that pµ ◦ iµ = idB0

µ
, where iµ : B0

µ ↪→ Aµ is the
natural inclusion.

Denoting A[d] for the set of d-torsion points of A, we have

Bµ =
⊔

t∈A[d]

Bt
µ,

where Bt
µ :=

{
(x1, · · · , xl) ∈ Aµ |

∑l
i=1

µi
d xi = t ∈ A

}
.

Now we specify the way that we view Bt
µ as a torsion translation of B0

µ. Since d is the greatest common
divisor of µ1, · · · , µl, it divides n + 1. We choose t′ ∈ A[n + 1] such that n+1

d · t
′ = t in A. Then the torsion

translation on A by t′ will induce some ‘torsion translation automorphism’ τt′ := (t′, · · · , t′) on A[n+1]

τt′ : A[n+1] → A[n+1]

z 7→ z + t′,

(e.g. when z is a reduced subscheme of length n + 1 given by (x1, · · · , xn+1) with x j’s pairwise distinct, it is
mapped to z + t′ := (x1 + t′, · · · , xn+1 + t′)); as well as on Aµ

τt′ : Aµ → Aµ

(x1, · · · , xl) 7→ (x1 + t′, · · · , xl + t′).
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These actions are compatible: we have the following commutative diagram with actions:

τt′ � Eµ

xx &&

τt′ � A[n+1]

s
''

Aµ 	 τt′

sµ
xx

id� A

Moreover, the action of τt′ on Aµ translates B0
µ isomorphically to Bt

µ.

3. Result ofMoonen and O’Sullivan

In this section, A is an abelian variety of dimension g. For any m ∈ Z, let m be the endomorphism of
A defined by the multiplication by m. To motivate the result of Moonen and O’Sullivan, let us firstly recall
the Beauville conjectures for algebraic cycles on abelian varieties. In [2] and [4], Beauville investigates
the Fourier transformation between the Chow rings of A and its dual abelian variety Â and establishes the
following:

Theorem 3.1 (Beauville decomposition). Let A be a g-dimensional abelian variety.
(i) For any 0 ≤ i ≤ g, there exists a direct-sum decomposition

CHi(A) =

i⊕
s=i−g

CHi
(s)(A),

where CHi
(s)(A) :=

{
z ∈ CHi(A) | m∗ z = m2i−sz,∀m ∈ Z

}
.

(ii) This decomposition is functorial: Let B be another abelian variety of dimension (g + c) and f : A → B
be a homomorphism of abelian varieties. Then for any i,

f ∗
(
CHi

(s)(B)
)
⊂ CHi

(s)(A);

f∗
(
CHi

(s)(A)
)
⊂ CHi+c

(s) (B).

(iii) The intersection product respects the grading: CHi
(s)(A) · CH j

(t)(A) ⊂ CHi+ j
(s+t)(A).

In the spirit of Bloch-Beilinson-Murre conjecture (cf. [1], [17]), Beauville makes in [4] the following
conjectures, which roughly say that F j CHi(A) := ⊕s≥ j CHi

(s)(A) should give the desired conjectural Bloch-
Beilinson-Murre filtration.

Conjecture 3.2 (Beauville conjectures). (i) For any i and any s < 0, CHi
(s)(A) = 0;

(ii) For any i, the restriction of the cycle class map cl : CHi
(0)(A)→ H2i(A,Q) is injective;

(iii) For any i, the restriction of the Abel-Jacobi map AJ: CHi
(1)(A)→ J2i−1(A)Q is injective.

Obviously, the Beauville conjectures hold for divisors, i.e. CH1(A) = CH1
(0)(A) ⊕ CH1

(1)(A) where

CH1
(0)(A) = Pics(A)Q ' NS (A)Q;

CH1
(1)(A) = Pic0(A)Q = Â ⊗Z Q.

In particular, the Q-subalgebra of CH∗(A) generated by symmetric line bundles on A is contained in
CH∗(0)(A) (by Theorem 3.1(iii)). As a special case of Beauville’s Conjecture 3.2(ii), Voisin raised the natural
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question whether the cycle class map cl is injective on this subalgebra. Recently, Moonen [20, Corollary
8.4] and O’Sullivan [23, Theorem Page 2-3] have given a positive answer to Voisin’s question:

Theorem 3.3 (Moonen, O’Sullivan). Let A be an abelian variety. Let P ∈ CH∗(A) be a polynomial with ra-
tional coefficients in the first Chern classes of symmetric line bundles on A, then P is numerically equivalent
to zero if and only if P is (rationally equivalent to) zero.

Remark 3.4. The above result is implicit in O’Sullivan’s paper [23]. In fact, he constructs the so-called
symmetrically distinguished cycles CH∗(A)sd, which is a Q-subalgebra of CH∗(A) containing the first Chern
classes of symmetric line bundles and mapping isomorphically by the numerical cycle class map to CH∗(A),
the Q-algebra of cycles modulo the numerical equivalence.

4. Proof of Theorem 1.6

Let us prove the main result. To fix the notation, we recall the following description of line bundles
on Kn (see [3, Proposition 8]). Let ε : A[n+1] → A(n+1) be the Hilbert-Chow morphism, which is a resolution
of singularities ([13]).

Proposition 4.1 (Beauville). We have an injective homomorphism

j : NS (A)Q ↪→ NS (Kn)Q

ctop
1 (L) 7→ L̃|Kn

such that
Pic(Kn)Q = NS (Kn)Q = j

(
NS (A)Q

)
⊕Q · δ|Kn ,

where δ is the exceptional divisor of A[n+1].

Here for a line bundle L on A, the Sn+1-invariant line bundle L � · · · � L on A × · · · × A descends to a
line bundle L′ on the symmetric product A(n+1) and we define L̃ := ε∗(L′).

Remark 4.2. As the notation in this proposition indicates, modifying the line bundle L on A inside its
numerical equivalence class will not change the resulting line bundle j(L) = L̃|Kn ∈ NS (Kn)Q = Pic(Kn)Q.

We hence obtain the following

Lemma 4.3. Given any polynomial z ∈ CH(Kn) in the Chern classes of TKn and the first Chern classes of
line bundles on Kn, as in the main theorem, then:
(i) There exists γ ∈ CH(A[n+1]) which is a polynomial of algebraic cycles of one of the three forms: c1

(
L̃
)

for some symmetric line bundle L ∈ Pics(A)Q, δ, and c j
(
TA[n+1]

)
for some j ∈ N, such that

γ|Kn = z in CH(Kn).

(ii) Moreover, for such γ, the automorphism τt′ of A[n+1] constructed at the end of Section 2 satisfies

(τt′∗(γ)) |Kn = γ|Kn = z in CH(Kn).

Proof. (i) Note that c j
(
TKn

)
= c j

(
TA[n+1]

)
|Kn , since TA is trivial. Part (i) thus follows from Proposition 4.1

because ctop
1 : Pics(A)Q

'
−→ NS (A)Q is an isomorphism (see [4, Page 649]).

(ii) It is clear that τt′∗(δ) = δ and τt′∗(TA[n+1]) = TA[n+1] . On the other hand, the pushforward of L by a torsion
translation on A has the same numerical class as L and hence by Remark 4.2,

(
τt′∗(L̃)

)
|Kn = L̃|Kn as line

bundles. Therefore modifying γ by the automorphism τt′ does not change its restriction to Kn, although it
might change the cycle γ itself. �
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Let us start the proof of Theorem 1.6. We will use ≡ to denote the numerical equivalence. Given
z ∈ CH(Kn) a polynomial of the Chern classes of TKn and line bundles on Kn as in the main theorem 1.6. By
Lemma 4.3(i), we can write z = γ|Kn for γ ∈ CH(A[n+1]) a polynomial of c1

(
L̃
)

for some L ∈ Pics(A)Q, δ,
and c j

(
TA[n+1]

)
for some j ∈ N.

Assuming z ≡ 0, we want to prove that z = 0. Adopting the previous notation, then for any µ ∈
P(n + 1) we have by Lemma 2.2

(Eµ ∗(γ)) |Bµ = Γµ ∗
(
γ|Kn

)
= Γµ ∗(z) ≡ 0.

Define β := Eµ ∗(γ) ∈ CH
(
Aµ

)
, the above equality says that β|Bµ ≡ 0, in particular,

(3) β|B0
µ
≡ 0.

To describe β, we need the following proposition, which is the analogue of the corresponding result
[25, Proposition 2.4] due to Voisin, and we will give its proof in the next section.

Proposition 4.4. For γ ∈ CH(A[n+1]) as above (i.e. a polynomial of cycles of the forms: c1
(
L̃
)

for some
L ∈ Pics(A)Q, δ, and c j

(
TA[n+1]

)
for some j ∈ N), the algebraic cycle β = Eµ ∗(γ) ∈ CH

(
Aµ

)
is a polynomial

with rational coefficients in cycles of the two forms:

• pr∗i (L) for some symmetric line bundle L on A and 1 ≤ i ≤ lµ;
• big diagonal ∆i j of Aµ = Alµ for 1 ≤ i , j ≤ lµ.

See the next section for its proof.

Corollary 4.5. With the same notation, β is a polynomial with rational coefficients in algebraic cycles of
the form φ∗ (L), for some homomorphism of abelian varieties φ : Aµ → A and some L ∈ Pics(A)Q.

Proof. It is enough to remark that the big diagonal ∆i j is nothing but the pull-back of OA ∈ CH0(A) via the
homomorphism

Aµ → A
(x1, · · · , xlµ) 7→ xi − x j

and OA ∈ CH0(A) is proportional to θ2 for some symmetric polarization θ ∈ Pics(A)Q, cf. [2, Page 249,
Corollaire 2]. �

Let us continue the proof of Theorem 1.6. Let B0
µ be the identity component of Bµ, iµ : B0

µ ↪→ Aµ and
pµ : Aµ � B0

µ be the inclusion and the splitting constructed in Section 2. By assumption, we have equation
(3): β|Bµ ≡ 0, therefore i∗µ(β) = β|B0

µ
≡ 0, hence

p∗µ
(
i∗µ(β)

)
≡ 0.

On the other hand, since iµ ◦ pµ : Aµ → Aµ is an endomorphism of Aµ, Corollary 4.5 implies that the
numerically trivial cycle p∗µ

(
i∗µ(β)

)
is also a polynomial of cycles of the form φ∗ (L), for some homomorphism

of abelian varieties φ : Aµ → A and some L ∈ Pics(A)Q. As a result, p∗µ
(
i∗µ(β)

)
is in the subalgebra of CH

(
Aµ

)
generated by the first Chern classes of symmetric line bundles of Aµ.

Therefore by the result of Moonen and O’Sullivan (Theorem 3.3), p∗µ
(
i∗µ(β)

)
≡ 0 implies p∗µ

(
i∗µ(β)

)
=

0. As a result,

(4) β|B0
µ

= i∗µ
(
p∗µ

(
i∗µ(β)

))
= 0.
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Recall that d = gcd(µ1, · · · , µl) and for any d-torsion point t of A, the automorphism τt′ constructed at the
end of Section 2 translates B0

µ to Bt
µ, therefore (4) implies that

τt′∗(β)|Bt
µ

= 0 for any t ∈ A[d].

However, τt′∗(β) = τt′∗ (Eµ ∗(γ)) = Eµ ∗ (τt′∗(γ)) by the compatibility of the actions of τt′ on A[n+1] and on
Aµ, as explained in Section 2.

We thus obtain that for any t ∈ A[d],

Γµ ∗ (z) |Bt
µ

= Γµ ∗
(
τt′∗γ|Kn

)
|Bt
µ

= (Eµ ∗(τt′∗γ)) |Bt
µ

= τt′∗(β)|Bt
µ

= 0.

Here the first equality comes from Lemma 4.3(ii), see also Remark 4.2; the second equality uses Lemma
2.2. Since Bµ is the disjoint union of all Bt

µ for all t ∈ A[d], we have

Γµ ∗(z) = 0 for any µ ∈P(n + 1).

Using De Cataldo-Migliorini’s result (rather Corollary 2.3), we have for z = γ|Kn as before,

z =
∑

µ∈P(n+1)

cµ Γ∗µ ◦ Γµ ∗ (z) = 0.

The proof of Theorem 1.6 is complete if one admits Proposition 4.4.

5. The proof of Proposition 4.4

The proof of Proposition 4.4 is quite technical but analogous to that of [25, Proposition 2.4]. For
the convenience of readers, we give in this section a more or less self-contained proof closely following
[25], emphasizing the differences from the case in [25]. The author thanks Claire Voisin for allowing him to
reproduce her arguments. For simplicity, we switch from n + 1 to n. Let A still be an abelian surface.

There are two natural vector bundles on A[n]. The first one is the tangent bundle Tn := TA[n] , the
second one is the rank n vector bundle On := pr1∗

(
OUn

)
, where Un ⊂ A[n] × A is the universal subscheme

and pr1 : A[n] × A → A[n] is the first projection. As c1 (On) = − 1
2δ, we can generalize Proposition 4.4 by

proving it for any γ a polynomial of c1
(
L̃
)

for some L ∈ Pics(A)Q, ci (On) for some i ∈ N, and c j (Tn) for
some j ∈ N.

For any L ∈ Pics (A), by the construction of Eµ ⊂ A[n] × Aµ, the restriction pr∗1
(
L̃
)
|Eµ is the pull back

of the line bundle L⊗ µ1 � · · ·�L⊗ µl on Aµ. Hence by projection formula, we only need to prove the following

Proposition 5.1. For γ ∈ CH(A[n]) a polynomial with rational coefficients of cycles of the forms:

• ci (On) for some i ∈ N;
• c j (Tn) for some j ∈ N,

the algebraic cycle β = Eµ ∗(γ) ∈ CH
(
Aµ

)
is a polynomial with rational coefficients in the big diagonals ∆i j

of Aµ = Alµ for 1 ≤ i , j ≤ lµ.

To show Proposition 5.1, we actually prove the more general Proposition 5.2 below (note that Propo-
sition 5.1 corresponds to the special case m = 0), which allows us to do induction on n. Let us introduce
some notation first: for any m ∈ N, let Eµ,m be the correspondence between A[n] × Am and Aµ × Am de-
fined by Eµ,m := Eµ × ∆Am . Let In be the ideal sheaf of the universal subscheme Un ⊂ A[n] × A. For any
1 ≤ i , j ≤ m, we denote by pr0 : A[n]×Am → A[n], resp. pri : A[n]×Am → A, resp. pr0i : A[n]×Am → A[n]×A,
resp. pri j : A[n] ×Am → A×A the projection onto the factor A[n], resp. the i-th factor of Am, resp. the product
of the factor A[n] and the i-th factor of Am, resp. the product of the i-th and j-th factors of Am.
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Proposition 5.2. For γ ∈ CH(A[n] × Am) a polynomial with rational coefficients of cycles of the forms:

• pr∗0
(
c j (On)

)
for some j ∈ N;

• pr∗0
(
c j (Tn)

)
for some j ∈ N;

• pr∗0i

(
c j (In)

)
for some 1 ≤ i ≤ m and j ∈ N;

• pr∗i j(∆A) for some 1 ≤ i , j ≤ m,

the algebraic cycle Eµ,m∗(γ) ∈ CH
(
Alµ+m

)
is a polynomial with rational coefficients in the big diagonals ∆i j

of Alµ+m, for 1 ≤ i , j ≤ lµ + m.

The main tool to prove this proposition is the so-called nested Hilbert schemes, which we briefly
recall here (cf. [22]). By definition, the nested Hilbert scheme is the incidence variety

A[n−1,n] :=
{
(z′, z) ∈ A[n−1] × A[n] | z′ ⊂ z

}
,

where z′ ⊂ z means z′ is a closed subscheme of z. It admits natural projections to A[n−1] and A[n], and also a
natural morphism to A which associates the residue point to such a pair of subschemes (z′ ⊂ z). The situation
is summarized by the following diagram:

(5) A[n−1] A[n−1,n]φ
oo

ψ
//

ρ

��

A[n]

A

We collect here some basic properties of the nested Hilbert scheme (cf. [12], [19], [22]):

• The nested Hilbert scheme A[n−1,n] is irreducible and smooth of dimension 2n (cf. [9]).
• The natural morphism σ := (φ, ρ) : A[n−1,n] → A[n−1] × A is the blow up along the universal sub-

scheme Un−1 ⊂ A[n−1] × A. Define a line bundle L := OA[n−1,n](−E) on A[n−1,n], where E is the
exceptional divisor of the blow up.
• The natural morphism σ = (φ, ρ) : A[n−1,n] → A[n−1] × A is also identified with the projection

P(In−1) = Proj
(
SymIn−1

)
→ A[n−1] × A.

Then L is identified with OP(In−1)(1) .
• The morphism ψ is generically finite of degree n.
• The natural morphism (ψ, ρ) : A[n−1,n] → A[n] × A is identified with the projection

P(ωUn)→ A[n] × A,

whereωUn is the relative dualising sheaf (supported on Un) of the universal subscheme Un ⊂ A[n]×A.

Before we return to the proof of Proposition 5.2, we do the following calculation:

Lemma 5.3. Let A be an abelian surface, ∆A ⊂ A × A be the diagonal. Then in CH(A × A), c1
(
O∆A

)
=

c3
(
O∆A

)
= c4

(
O∆A

)
= 0, and c2

(
O∆A

)
= −∆A.

Proof. We apply the Grothendieck-Riemann-Roch formula to the diagonal embedding A ↪→ A × A, we
get (since td (TA) = td (TA×A) = 1): ch(O∆A) = ∆A ∈ CH2(A × A), and the calculation of Chern classes
follows. �

Proof of Proposition 5.2. We do induction on n. When n = 0, there is nothing to prove.
When n = 1, the only possible µ = (1), hence Eµ,m is the identity correspondence of Am+1. Since O1 is the
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structure sheaf, T1 = TA is trivial and I1 = I∆A is the ideal sheaf of the diagonal, whose Chern classes are
either zero or ∆A (by Lemma 5.3), Proposition 5.2 is verified in this case.
Now assuming the statement holds for n − 1, let us prove it for n. In the rest of the proof, a partition
of n means a grouping of the set {1, 2, · · · , n} rather than just a decreasing sequence of natural numbers
with sum n as before. More precisely, a partition µ of length l is a sequence of mutually exclusive subsets
µ1, · · · , µl ∈ 2{1,··· ,n} such that

∐l
j=1

µ j = {1, · · · , n}. Thus we can naturally identify Aµ := Alµ with the

diagonal
{
(x1, . . . , xn) ∈ An | xi = x j if i, j ∈ µk for some k

}
⊂ An.

Consider the reduced fibre product (Aµ ×A(n) A[n−1,n])red, which has lµ irreducible components dominating
Aµ, depending on the choice of the residue point. Let us pick one component, for example, the one where
over a general point (x1, · · · , xn) ∈ Aµ, the residue point is xn. Let µ′ be the partition of {1, 2, · · · , n − 1}
given by µ′i := µi \{n} for all i. Let us call this irreducible component Eµ,µ′ . Set theoretically,

Eµ,µ′ =
{
((x1, · · · , xn), z′ ⊂ z) ∈ Aµ × A[n−1,n] | [z′] = x1 + · · · + xn−1, [z] = x1 + · · · + xn

}
;

Eµ =
{
((x1, · · · , xn), z) ∈ Aµ × A[n] | [z] = x1 + · · · + xn

}
;

Eµ′ =
{
((x1, · · · , xn−1), z′) ∈ Aµ

′

× A[n−1] | [z′] = x1 + · · · + xn−1
}
,

where [−] means the Hilbert-Chow morphism.
We have the following commutative diagram with natural morphisms:

(6) Aµ
′

× A Aµιoo

Eµ′ × A

gµ′ ,1

OO

fµ′ ,1
��

Eµ,µ′
χ′

oo
χ

//

p
��

Eµ

gµ

OO

fµ
��

A[n−1] × A A[n−1,n]
σ=(φ,ρ)
oo

ψ
// A[n]

Here and in the sequel, for any morphism h and any m ∈ N, we denote by hm the morphism h × idAm .
In the above diagram, fµ, gµ, fµ′ , gµ′ are the natural projections; χ = (idAµ , ψ) : ((x1, · · · , xn), z′ ⊂ z) 7→
((x1, · · · , xn), z), χ′ = (prAµ′ , σ) : ((x1, · · · , xn), z′ ⊂ z) 7→ ((x1, · · · , xn−1), z′, xn) both are of degree 1; and
finally ι : (x1, · · · , xn) 7→ ((x1, · · · , xn−1), xn) is either an isomorphism or a diagonal embedding depending
on whether n is the only one element in the subset of partition where n belongs to.

Here comes the key setting for the induction process. For any m ∈ N, we make a product of the above
diagram with Am and replace any morphism h by hm := h × idAm :

(7) Aµ
′

× Am+1 Aµ × Amιmoo

Eµ′ × Am+1

gµ′ ,m+1

OO

fµ′ ,m+1
��

Eµ,µ′ × Amχ′moo
χm

//

pm
��

Eµ × Am

gµ,m

OO

fµ,m
��

A[n−1] × Am+1 A[n−1,n] × Am
σm
oo

ψm

// A[n] × Am

Given γ ∈ CH(A[n] × Am) a polynomial expression as in Proposition 5.2, we want to prove that
gµ,m∗

(
f ∗µ,mγ

)
∈ CH(Aµ × Am) is a polynomial of big diagonals of Alµ+m. Since ιm is either an isomorphism or
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a diagonal embedding, it suffices to prove the same thing for ιm∗ ◦gµ,m∗
(

f ∗µ,mγ
)
∈ CH(Aµ

′

×Am+1). However,

ιm∗ ◦ gµ,m∗
(

f ∗µ,mγ
)

= ιm∗ ◦ gµ,m∗ ◦ χm∗ ◦ χ
∗
m ◦ f ∗µ,m (γ) (since χm is of degree 1)

= gµ′,m+1∗ ◦ χ
′
m∗ ◦ χ

∗
m ◦ f ∗µ,m (γ)

= gµ′,m+1∗ ◦ χ
′
m∗ ◦ p∗m ◦ ψ

∗
m (γ)

= gµ′,m+1∗ ◦ f ∗µ′,m+1 ◦ σm∗ ◦ ψ
∗
m (γ) (by [25, Page 626 (2.13)]).

Using the induction hypothesis (since µ′ is a partition of n − 1), we find that to finish the proof, it is enough
to verify

Proposition 5.4. If γ ∈ CH(A[n] × Am) is a polynomial expression in the cycles of the following forms:

• pr∗0
(
c j (On)

)
for some j ∈ N;

• pr∗0
(
c j (Tn)

)
for some j ∈ N;

• pr∗0i

(
c j (In)

)
for some 1 ≤ i ≤ m and j ∈ N;

• pr∗i j (∆A) for some 1 ≤ i , j ≤ m.

then σm∗ ◦ψ
∗
m (γ) ∈ CH(A[n−1] ×Am+1) is a polynomial in cycles of these four forms with n replaced by n− 1

and m replaced by m + 1.

This will follow essentially from the formulae below established in [11]. We adopt the notation in
Diagram (5), (6), (7) and the definition of the line bundleL after Diagram (5). In our case of abelian surface,
the formulae are simplified thanks to the fact that TA is trivial.

Theorem 5.5 ([11], Proposition 2.3, Lemma 2.1, in the proof of Proposition 3.1 and Lemma 1.1). We have
the following equalities in the Grothendieck group K0(A[n−1,n]):

(i) ψ!Tn = φ!Tn−1 +L · σ!I∨n−1 + 1;
(ii) ψ!On = φ!On−1 +L;

an equality in the Grothendieck group K0(A[n−1,n] × A):

(iii) ψ!
1In = φ!

1In−1 − (L � OA) · ρ!
1(O∆A);

and an equality in the Chow group CH(A[n−1] × A):

(iv) σ∗
(
c1(L)i

)
= (−1)ici(−In−1).

Return to the proof of Proposition 5.4. Taking the Chern classes of both sides of (i), (ii), (iii) in
Theorem 5.5, we get formulae for pull-backs by ψ or ψ1 of the Chern classes of Tn,On,In in terms of
polynomial expressions of the first Chern class of L and the pull-backs by φ, ρ, σ of the Chern classes of
Tn−1,On−1,In−1 and O∆A . Therefore by the calculations in Lemma 5.3 and the fact that σ = (φ, ρ), we obtain
that ψ∗m(γ) ∈ CH

(
A[n−1,n] × Am

)
is a polynomial of cycles of the following five forms:

• σ∗m ◦ pr∗0
(
c j(Tn−1)

)
for some j ∈ N;

• pr∗0 (c1(L));
• σ∗m ◦ pr∗0i

(
c j(In−1)

)
for some 1 ≤ i ≤ m + 1 and j ∈ N;

• σ∗m ◦ pr∗0
(
c j(On−1)

)
for some j ∈ N;

• σ∗m ◦ pr∗i j (∆A) for some 1 ≤ i , j ≤ m + 1,
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where we also use pr0 to denote the projection A[n−1,n] × Am → A[n−1,n], etc.
When apply σm∗ to a polynomial in cycles of the above five types, using the projection formula for the
birational morphism σm and Theorem 5.5(iv), we conclude that σm∗ ◦ ψ

∗
m (γ) is of the desired form. This

finishes the proof of Proposition 5.4 thus completes the proof of Proposition 4.4. �
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