Existence and uniqueness for anisotropic and crystalline mean curvature flows - Archive ouverte HAL
Article Dans Une Revue Journal of the American Mathematical Society Année : 2019

Existence and uniqueness for anisotropic and crystalline mean curvature flows

Résumé

An existence and uniqueness result, up to fattening, for crystalline mean curvature flows with forcing and arbitrary (convex) mobilities, is proven. This is achieved by introducing a new notion of solution to the corresponding level set formulation. Such a solution satisfies the comparison principle and a stability property with respect to the approximation by suitably regularized problems. The results are valid in any dimension and for arbitrary, possibly unbounded, initial closed sets. The approach accounts for the possible presence of a time-dependent bounded forcing term, with spatial Lipschitz continuity. As a by-product of the analysis, the problem of the convergence of the Almgren-Taylor-Wang minimizing movements scheme to a unique (up to fattening) "flat flow" in the case of general, possibly crystalline, anisotropies is settled.
Fichier principal
Vignette du fichier
cmnpfinal.pdf (535.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01463880 , version 1 (09-02-2017)
hal-01463880 , version 2 (13-06-2019)

Identifiants

Citer

Antonin Chambolle, Massimiliano Morini, Matteo Novaga, Marcello Ponsiglione. Existence and uniqueness for anisotropic and crystalline mean curvature flows. Journal of the American Mathematical Society, 2019, pp.1. ⟨10.1090/jams/919⟩. ⟨hal-01463880v2⟩
998 Consultations
268 Téléchargements

Altmetric

Partager

More