An adaptive robust regression method: Application to galaxy spectrum baseline estimation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

An adaptive robust regression method: Application to galaxy spectrum baseline estimation

Résumé

In this paper, a new robust regression method based on the Least Trimmed Squares (LTS) is proposed. The novelty of this approach consists in a simple adaptive estimation of the number of outliers. This method can be applied to baseline estimation, for example to improve the detection of gas spectral signature in astronomical hy-perspectral data such as those produced by the new Multi Unit Spec-troscopic Explorer (MUSE) instrument. To do so a method following the general idea of the LOWESS algorithm, a classical robust smoothing method, is developed. It consists in a windowed local linear regression, the local regression being done here by the new adap-tive LTS approach. The developed method is compared with state-of-the art baseline estimated algorithms on simulated data closed to the real data produced by the MUSE instrument.
Fichier principal
Vignette du fichier
ArticleICASSP.pdf (296.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01462974 , version 1 (09-02-2017)

Identifiants

Citer

Raphael Bacher, Florent Chatelain, Olivier J.J. Michel. An adaptive robust regression method: Application to galaxy spectrum baseline estimation. ICASSP 2016 - 41st IEEE International Conference on Acoustics, Speech and Signal Processing, Mar 2016, Shanghai, China. pp.4423 - 4427, ⟨10.1109/ICASSP.2016.7472513⟩. ⟨hal-01462974⟩
338 Consultations
713 Téléchargements

Altmetric

Partager

More