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ABSTRACT

In this paper, a new robust regression method based on the Least
Trimmed Squares (LTS) is proposed. The novelty of this approach
consists in a simple adaptive estimation of the number of outliers.
This method can be applied to baseline estimation, for example to
improve the detection of gas spectral signature in astronomical hy-
perspectral data such as those produced by the new Multi Unit Spec-
troscopic Explorer (MUSE) instrument. To do so a method follow-
ing the general idea of the LOWESS algorithm, a classical robust
smoothing method, is developed. It consists in a windowed local lin-
ear regression, the local regression being done here by the new adap-
tive LTS approach. The developed method is compared with state-
of-the art baseline estimated algorithms on simulated data closed to
the real data produced by the MUSE instrument.

Index Terms— Baseline Estimation, Robust Regression, Least
Trimmed Squares, Spectroscopy, Astronomy

1. INTRODUCTION

Classical estimators such as least squares (LS) are not robust to out-
liers. Thus a number of robust regression approaches have been de-
veloped. These methods search to lessen the influence of outliers.
Among the most popular approaches are the M-estimators[1]. These
methods are based on a penalization of the greatest residuals in the
regression process by using a weight function as e.g. the Huber func-
tion [1, p.24]. The main advantage of using non truncating weight
function, such as the Huber one, is that a global minimization is as-
sured. But the influence of outliers is always present as they are
never fully discarded.

Least Trimmed Squares (LTS) [2, p.15] is another classical ro-
bust estimator which can be seen as an M-estimator but with a trun-
cating weight function. Indeed it consists in keeping only the small-
est residual values and discarding the others. Although this can not
assure a global minimization, LTS approach is more robust to out-
liers as it does not take them into account provided they are correctly
discarded. Moreover, in the absence of outlier, this estimator has the
same asymptotic properties (n−1/2 order of convergence rate) than
LS [3, 4].

For all M-estimators a scaling factor is critical. For LTS, this is
equivalent to estimating the proportion of outliers. To address this
issue, a simple adaptive approach is presented in this paper, based
on an empirical distribution of sorted residuals. This results in a new
adaptive least trimmed squares (ALTS) which keeps the robustness
of a fixed-outliers-proportion LTS while improving the asymptotic
efficiency in the absence of outliers.
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One application of robust regression is the problem of baseline
detection in spectroscopic data. Peaks in a spectrum are considered
as ”outliers” (there are sparse) and should be separated from a slowly
varying baseline.

As explained in [5], a large number of methods have been de-
veloped in recent years to deal with baseline estimation in spec-
troscopy : AIRPLS [6], LOWESS [7], BACKCORR [8] or more
recently BEADS [9]. AIRPLS takes an non-parametric Iterative Pe-
nalized Least Squares approach. BEADS is based on a filtering ap-
proach where the baseline is analog to the low-pass component of
the signal. Most of those technics were developed in a context of
chemistry and chromatography.

In this paper we place ourselves in a slightly different context.
The Multi Unit Spectroscopic Explorer (MUSE) [10] is a new as-
tronomical spectrograph, producing hyperspectral datacube of the
deep Universe. New challenges arise such as a low Signal-to-Noise-
Ratio (SNR), and the fact that data reduction processes are likely to
produce non-positive values in the spectrum. AIRPLS for example
is not able to handle the presence of absorption peaks or important
symmetric noise. Moreover, the huge number (more than 9× 104

spectra by datacube) and diversity of spectra to process calls for an
unsupervised and adaptive approach. Therefore it is pertinent to de-
rive a robust and adaptive LTS approach. An adaptive LTS was pro-
posed in [11] but it is based on an ad hoc context-oriented criterion,
and it can barely be extended to the context of baseline detection.

Section 2 presents the proposed method of adaptive LTS, section
3 explains how to apply this method in an spectral baseline estima-
tion context and in section 4 the proposed method is tested on sim-
ulated data close to the MUSE data and compared to state-of-the-art
baseline estimation algorithms. Finally some conclusions and per-
spectives are drawn in section 5.

2. THE ADAPTIVE LTS ALGORITHM

2.1. Least Trimmed Squares Estimation

We are interested in the statistical linear regression problem:

y = Xβ + ε, (1)

where y ∈ Rn is the observation vector, X ∈ Rn×q is a given
design matrix, β ∈ Rq is the regression coefficient vector and ε ∈
Rn is a centered white noise vector with variance σ2. The classical
LS estimator of β aims at solving:

β̂LS = arg min
β

n∑
i=1

(yi − xT
i β)2 =

n∑
i=1

[ri(β)]2, (2)

where xi is the ith column vector of X , while ri(β) ≡ yi − xT
i β

denotes the ith residual, for i = 1, . . . , n.



In a robust framework, we assume now that a proportion of the
observations may be atypical data corresponding to outliers. Then,
for i = 1, . . . , n, the observation model reads yi = xT

i β + εi
for ’typical’ data, while it remains undefined for outliers. By na-
ture, outliers are assumed to be distributed far away from the pre-
diction model xT

i β. This yields large residuals that can spoil the
least squares estimator. LTS estimator is a classical robust estima-
tor that discards the largest residuals. For a given β, let r(i), for
i = 1, . . . , n, be the ordered absolute values of the residuals such
that |r(1)| ≤ |r(2)| ≤ . . . ≤ |r(n)|. The α-LTS estimator is defined
as [2]

β̂LTS = arg min
β

h∑
i=1

[r(i)(β)]2, (3)

where α ∈ [1/2, 1] and h = [αn] are respectively the proportion
and the number of the smallest residuals that are retained in the cri-
terion to be minimized. The definition given in (3) requires to solve a
nonconvex optimization problem in order to compute LTS estimator.
As explained in [11], this can be viewed as the following extended
optimisation problem with constraints:{

minβ,w
∑n

i=1 wi(yi − xT
i β)2,

s.t. ||w||0 ≥ h, w ∈ {0, 1}n
(4)

The optimization is now performed jointly on β and on the binary
weight vector w ∈ {0, 1}n. This can be solved by alternating two
simple steps. For a fixedw, the global minimizer over β is given by

β̂ = (XTWX)−1XTWy, (5)

where W = diag (w) is a diagonal weighting matrix. For a fixed
β, the global minimizer over w is the binary vector such that, for
i = 1, . . . , n:

wi =

{
1 if |ri(β)| ≤ |r(h)(β)|,
0 otherwise

(6)

This leads to the iterative algorithm described in Alg. 1. This is

Algorithm 1 LTS

1: Inputs: X (design matrix), y (data), h (number of non-outliers),
β̂

0
(initialization)

2: Loop:
3: while β̂

k
6= β̂

k−1
do

4: Update: compute ŵk based on β̂k−1 using (6)

5: Prediction: compute β̂
k

based on ŵk using (5)

6: Output: β̂
k

a classical prediction-correction method, where each step decreases
the criterion given in (4). The binary vector w belonging to a finite
space, the convergence to a local minimum of the initial problem
(3) is guaranteed after a finite number of iterations. As described in
[12], it is possible as in the k-means algorithm to randomly choose
several subsets of observations in order to perform several random
initializations of the algorithm. This may avoid to be trapped in some
local minima, e.g. when the LS estimate (2) is a too bad initial value.

2.2. Adaptive LTS

A classical choice for the trimming proportion parameter of the LTS
procedure is given by α = 1/2. In this case, the LTS estimator
is based on half of the observations having the smallest estimated
variance. Tis leads to a robust estimator with a breakdown point of
50% similar to the median for instance. However the asymptotic
efficiency1 of this estimator is only 7% when there is no outlier [2,
p.178-182]. The goal of an adaptive LTS procedure is to estimate
the number of non-outliers ĥ in order to remain robust, while im-
proving the efficiency of the estimator. Let h0 and π0 = h0/n be
respectively the true number and the true proportion of non-outliers
in the observation vector y. Consider now the process defined, for
i = 1, . . . , n, by

s2i =
1

i

i∑
j=1

r2(j), (7)

where the ordered residuals are obtained from an initial LTS estima-
tor with α = 1/2 (the dependence of the residuals over β is now
omitted for brevity). It is easy to see that

(
s2i
)
1≤i≤n

is a nonde-
creasing sequence.

2.2.1. Known variance σ2

When the noise variance σ2 is known, an estimate ĥ of the true num-
ber h0 of non-outliers is obtained as the following stopping time:

ĥ = max
{
i ∈ {1, . . . , n} : s2i ≤ σ2} . (8)

To explain the rationale behind (8), we assume that the residuals as-
sociated with the outliers are greater than the h0 residuals associated
with the non-outliers. In this case, the initial LTS procedure with
α = 1/2 gives a consistent estimate of β as long as h0 ≥ dn/2e.
Moreover when i = h0, s2i reduces to the sample variance of the h0

non-outlier residuals. This yields a consistent estimate of the vari-
ance σ2. Conversely, when i > h0, s2i is an upward biased estimator
of σ2 with a bias that increases rapidly with i as the outlier residuals
are greater than the non-outliers one. As a consequence, ĥ should be
a rather conservative (under) estimate of h0.

A new LTS estimation can finally be performed on the ĥ small-
est residuals. These two steps: 1) estimation ĥ of h0 given in (8)
and 2) computation of the resulting LTS estimator, can be repeated
until convergence of the estimates, as described in the general case
(unknown variance) in Alg. 2.

2.2.2. Unknown variance

In the general case, the noise variance σ2 is unknown. A first esti-
mation can be obtained on the residuals using the median absolute
deviation (MAD) estimate. Based on the Gaussian noise assumption,

σ̂MAD =
1

Φ−1(3/4)

∣∣r(dn/2e)
∣∣ , (9)

where Φ−1 is the normal quantile function. This estimate can then
be plugged in (8) to obtain a first estimate ĥ of h0. Then an LTS
estimation can be performed on the ĥ smallest residuals. Moreover,
the variance parameter can now be estimated by

σ̂2 =
1

ĥ

ĥ∑
i=1

r2(i). (10)

1for a symmetric noise, and in the absence of outlier, the asymptotic ef-
ficiency reduces to the ratio of the variance of the least squares estimator
divided by the asymptotic variance of the robust estimator



This leads to the iterative algorithm, called Adaptive LTS (ALTS),
summarized in Alg. 2.

Algorithm 2 Adaptive LTS (ALTS)

1: Input: X (design matrix), y (data), β0 (initial value)

2: Initialization:
3: Compute the LTS(X ,y,h0,β0) estimator β1, with h0 = dn/2e,

where LTS refers to Algo 1
4: Compute σ̂MAD using (9)
5: Compute h1 by plugging σ̂2

MAD in (8)

6: Loop:
7: while hk 6= hk−1 do
8: β̂

k
= LTS(X,y, ĥk−1, β̂

k−1
)

9: Compute σ̂2,k using (10)
10: Compute hk by plugging σ̂2,k in (8)

11: Output: β̂
k

It is important to note that the proposed ALTS algo-
rithm converges in a finite number of steps. In fact, from
(10) and (8), it comes that σ̂2,k = 1

hk−1

∑hk−1

i=1 r2(i) ≥ s
2,k
hk−1

.

As hk = max
{
i ∈ {1, . . . , n} : s2,ki ≤ σ̂2,k

}
, it comes that

hk ≥ hk−1. This shows that (hk)k is a nondecreasing integer se-
quence. This sequence being bounded by the sample size n, it con-
verges in a finite number of steps.

3. APPLICATION TO SPECTRAL FILTERING

One of the main purposes of the wide field spectrograph MUSE [10]
is to analyze galaxies and their surroundings by the study of their
spectra. Galaxy spectra are composed of a continuum emission and
of sparse emission (or absorption) peaks. On the contrary surround-
ing gas only contains peak such as the Lyman α emission line. To
ease the detection of spectral peaks, signature of gas, mixed with
galaxies spectral signatures, one approach is to remove the continu-
ous component which can be assimilated to a baseline.

In [7], the LOWESS method was developed to process samples
of thousands of values by performing local weighted linear regres-
sions. For time series smoothing, this is equivalent to use a sliding
window centered on each sample location in order to estimate the
signal at the window center. The samples in the sliding widow are
weighted according to a tricube function. This function is defined as
f(q) = (1− |q/l|3)3 where q ∈ {−l, . . . , l} is the relative position
in the window of size 2l + 1. As this local parametric regression is
performed for each sample, this yields a non-parametric estimator of
the global time series baseline. A robust version of this algorithm
consists of iterating this process with new weights obtained by pe-
nalizing the highest residuals.

Following the same line of idea as in LOWESS, a weighted
sliding-window local regression is used here. However local regres-
sion is performed by the ALTS algorithm developed in sec. 2 with a
first order polynomial regression. Each point of the signal is there-
fore estimated by an ALTS approach applied to its weighted neigh-
bours inside the window. A smoothing is finally applied in post-
processing by using again local regressions with the tricube weight-
ing function. Note that this estimation procedure depends on a single
parameter: the half-window size l.

The complete algorithm is presented in Alg. 3, where F 1/2 =
diag ({f(i)}−l≤i≤l) denotes the diagonal matrix of the squared root
weights given by the tricube function, and xk = (1, tk)T ∈ R2 is
the first order polynomial value at time tk.

Algorithm 3 ALTS Baseline Estimation

1: Input: y (data), l (window half size)

2: for i in (1, n) do
3: Xl

i = F 1/2 × [xi−l, ...,xi+l]
T

4: yl
i = F 1/2 × (yi−l, . . . , yi+l)

T

5: βi = ALTS(Xl
i ,y

l
i,βi−1) using Alg. 2

6: ŷi = (Xl
iβi)i

7: Smooth ŷ using local regressions with a tricube function.

8: Output: ŷ

4. SIMULATION AND RESULTS

4.1. Detection of outliers

We first test algorithm 2 in a non-local framework, with a third order
regression. A third order polynomial baseline is built, corrupted by a
Gaussian noise and two peaks (with Gaussian shape) corresponding
to outliers. The oracle is a least squares regression using the known
position of the outliers to discard them.
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Fig. 1: Mean baseline estimates for 1000 Monte-Carlo runs with
π0 = 0.7. ALTS estimation (N marker), α-LTS estimation for
α = 0.8 ( � marker), one realization of the noisy signal (blue

curve), baseline ground-truth (thick black line), mean estimates of
the binary weights wi defined in (4) (red dotted line)

Table 1 shows the results of the baseline estimation for the ALTS
algorithm, in the known and unknown variance cases, for the α-LTS
algorithm (α = 0.8) and for the oracle, with different values of non-
outlier proportion π0. All the LTS algorithms are initialized with
the LS estimate (corrupted by outliers). One sees that π0 is cor-
rectly estimated by ALTS, with and without knowing the variance,
for π0 ≥ 0.8. For π0 = 0.7 the number of detected outliers is
slightly lower than the real one, even with known variance. This is
due to the difficulty to differentiate the tails of the peaks from the
noise, as illustrated in Figure 1.

When the trimming factor α in LTS matches the true propor-
tion π0 of non-outliers, LTS slightly outperforms the adaptive ap-
proach. In all other cases it is bested in Mean Integrated Square
Error (MISE) by the ALTS. One can also see that as π0 tends to one,
the ALTS reaches the efficiency of the oracle. These results illustrate



that ALTS is both robust to outliers and asymptotically efficient in
the absence of outliers.

Table 1: Performances of the ALTS, ALTS with known σ2 , α-LTS
with α = 0.8 and oracle for π0 from 0.7 to 1. Values are integrated

over the signal and computed on 1000 Monte Carlo runs

ALTS
ALTS

(known σ2)
LTS

(α = 0.8) Oracle

π0 = 0.7
π̂0 0.76 0.73 (0.8) (0.7)
MISE 0.43 0.36 0.68 0.13
Variance 0.20 0.20 0.17 0.13
Bias2 0.23 0.16 0.51 1× 10−5

π0 = 0.8
π̂0 0.81 0.80 (0.8) (0.8)
MISE 0.21 0.21 0.18 0.15
Variance 0.18 0.18 0.17 0.15
Bias2 0.025 0.032 0.015 1× 10−4

π0 = 0.9
π̂0 0.89 0.89 (0.8) (0.9)
MISE 0.11 0.12 0.18 0.10
Variance 0.11 0.11 0.18 0.10
Bias2 1.4× 10−4 1× 10−3 5× 10−4 6× 10−5

π0 = 1
π̂0 0.98 0.98 (0.8) (1)
MISE 0.09 0.09 0.20 0.087
Variance 0.09 0.09 0.20 0.087
Bias2 7.4× 10−5 9.6× 10−5 9.8× 10−5 9.6× 10−5

4.2. Performance on simulated spectra

A reference spectrum is built using real MUSE data. The baseline
ground-truth is built from a spatial average of a galaxy spectrum in
MUSE data, filtered by a zero-phase recursive low-pass filter. Two
emission lines extracted from real data are added. The parameters
used for the additive Gaussian noise those estimated on real data. A
realization of the resulting signal is shown in Figure 2 (a).

The proposed method is compared with the BEADS algorithm
and the robust version of LOWESS. We tried to find the best param-
eters for these methods. The cut-off frequency of BEADS was first
set to the same value as the parameter used for building the reference
spectrum. After testing it appears that the best results were obtained
with a slightly lower cut-off frequency. Other parameters were also
the best found by trial-error. We choose a common window size for
LOWESS and ALTS.

Table 2: ALTS, LOWESS and BEADS. Values are integrated over
the signal, or over a 200-window centered on one peak.

ALTS LOWESS BEADS
Overall
MISE 3.76 4.20 5.84
Variance 2.98 3.26 2.59
Bias2 0.78 0.94 3.25
Peak zone
MISE 0.26 0.45 0.91

Results in Table 2 are obtained from 200 Monte-Carlo runs. Re-
sults from our method appeared to be better than those obtained by
the two state-of-the art methods BEADS and LOWESS, particularly
in the peak area as illustrated in Figure 2(b).

4.3. Parameters and computational cost

The final algorithm involves only one parameter: the window size.
This later will mostly impact the variance of the estimation since the
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(a) Realization of a noisy signal built using MUSE data (blue
curve), and noise free signal (red curve)
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Fig. 2: Baseline estimation on simulated data for ALTS, LOWESS,
and BEADS averaged on 200 realisations.

larger it is set, the smoother the estimation. Experimental evidence
shows that it can be set easily to a reasonable size without deeply de-
grading the estimation. The computational cost is for now quite high:
a few seconds for a 3600 values signal with a Python implementa-
tion against 200ms for the MATLAB implementation of BEADS and
one second for the python version of LOWESS. Nonetheless, note
that BEADS depends on the cut-off frequency plus three penaliza-
tion weights that must be carefully tuned (especially the generally
unknown cut-off parameter).

5. CONCLUSION

In this paper a new robust regression method based on the Least
Trimmed Squares estimator was developed. The novelty consists
in an adaptive estimation of the number of outliers. This adaptive
method can be used in an baseline estimation context by using a lo-
cal linear regression approach similar to the classical robust estima-
tion algorithm LOWESS. Realistic simulated data mimicking MUSE
data were built. Comparison between the proposed method and the
state-of-the art baseline detection algorithms LOWESS and BEADS
illustrates the improvement brought by our algorithm but at the price
of a higher computational cost.

In some future work the authors would like to explore the con-
vergence properties of the Adaptive Least Trimmed Squares estima-
tor as well as improve the computational costs of the ALTS method.
The authors would like to thank the ERC grant 339659-MUSICOS
for the funding of this work.
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