Functional and structural characterization of two Bacillus megaterium nitroreductases biotransforming the herbicide mesotrione. - Archive ouverte HAL
Article Dans Une Revue Biochemical Journal Année : 2016

Functional and structural characterization of two Bacillus megaterium nitroreductases biotransforming the herbicide mesotrione.

Résumé

Mesotrione is a selective herbicide belonging to the triketone family, commonly used on maize cultures since 2003. A mesotrione-transforming Bacillus megaterium Mes11 strain isolated from an agricultural soil was used as a model to identify the key enzymes initiating the biotransformation of this herbicide. Two enzymes (called NfrA1 and NfrA2/YcnD) were identified, and functionally and structurally characterized. Both belong to the NfsA FRP family of the nitro-FMN reductase superfamily (type I oxygen-insensitive nitroreductase) and show optimal pH and temperature of 6-6.5 and 23-25°C, respectively. Both undergo a Ping Pong Bi Bi mechanism, with NADPH and NADPH/NADH as cofactors for NfrA1 and NfrA2/YcnD, respectively. It is interesting that both can also reduce various nitro compounds including pesticides, antibiotics, one prodrug and 4-methylsulfonyl-2-nitrobenzoic acid, one of the mesotrione metabolites retrieved from the environment. The present study constitutes the first identification of mesotrione-transforming enzymes. These enzymes (or their corresponding genes) could be used as biomarkers to predict the capacity of ecosystems to transform mesotrione and assess their contamination by both the parent molecule and/or the metabolites.
Fichier principal
Vignette du fichier
Carles et al 2016.pdf (1.01 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01457189 , version 1 (11-12-2023)

Identifiants

Citer

Louis Carles, Pascale Pascale Besse, P. Besse-Hoggan Besse-Hoggan, Muriel Joly, Armelle Vigouroux, Solange Moréra, et al.. Functional and structural characterization of two Bacillus megaterium nitroreductases biotransforming the herbicide mesotrione.. Biochemical Journal, 2016, 473 (10), pp.1443-1453. ⟨10.1042/BJ20151366⟩. ⟨hal-01457189⟩
291 Consultations
70 Téléchargements

Altmetric

Partager

More