Linear independence of values of G-functions - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2020

Linear independence of values of G-functions

Tanguy Rivoal

Résumé

Given any non-polynomial $G$-function $F(z)=\sum_{k=0}^\infty A_k z^k$ of radius of convergence $R$, we consider the $G$-functions $F_n^{[s]}(z)=\sum_{k=0}^\infty \frac{A_k}{(k+n)^s}z^k$ for any integers $s\geq 0$ and $n\geq 1$. For any fixed algebraic number $\alpha$ such that $0 < \vert \alpha \vert < R$ and any number field $\mathbb{K}$ containing $\alpha$ and the $A_k$'s, we define $\Phi_{\alpha, S}$ as the $\mathbb{K}$-vector space generated by the values $F_n^{[s]}(\alpha)$, $n\ge 1$ and $0\leq s\leq S$. We prove that $u_{\mathbb{K},F}\log(S)\leq \dim_{\mathbb{K}}(\Phi_{\alpha, S })\leq v_F S$ for any $S$, with effective constants $u_{\mathbb{K},F}>0$ and $v_F>0$, and that the family $(F_n^{[s]}(\alpha))_{1\le n \le v_F, s \ge 0}$ contains infinitely many irrational numbers. This theorem applies in particular when $F$ is an hypergeometric series with rational parameters or a multiple polylogarithm, and it encompasses a previous result by the second author and Marcovecchio in the case of polylogarithms. The proof relies on an explicit construction of Pad\'e-type approximants. It makes use of results of Andr\'e, Chudnovsky and Katz on $G$-operators, of a new linear independence criterion \`a la Nesterenko over number fields, of singularity analysis as well as of the saddle point method.
Fichier principal
Vignette du fichier
gfndiodef.pdf (378.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01450032 , version 1 (30-01-2017)

Identifiants

Citer

Stéphane Fischler, Tanguy Rivoal. Linear independence of values of G-functions. Journal of the European Mathematical Society, 2020, ⟨10.4171/JEMS/950⟩. ⟨hal-01450032⟩
221 Consultations
130 Téléchargements

Altmetric

Partager

More