Optimal shape design for 2D heat equations in large time - Archive ouverte HAL
Article Dans Une Revue Pure and Applied Functional Analysis Année : 2018

Optimal shape design for 2D heat equations in large time

Résumé

In this paper, we investigate the asymptotic behavior of optimal designs for the shape optimization of 2D heat equations in long time horizons. The control is the shape of the domain on which heat diffuses. The class of 2D admissible shapes is the one introduced by Sverák in [29], of all open subsets of a given bounded open set, whose complementary sets have a uniformly bounded number of connected components. Using a Γ-convergence approach, we establish that the parabolic optimal designs converge as the length of the time horizon tends to infinity, in the complementary Hausdorff topology, to an optimal design for the corresponding stationary elliptic equation.
Fichier principal
Vignette du fichier
longtimeheat.pdf (235.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01442997 , version 1 (21-01-2017)

Identifiants

  • HAL Id : hal-01442997 , version 1

Citer

Emmanuel Trélat, Can Zhang, Enrique Zuazua. Optimal shape design for 2D heat equations in large time. Pure and Applied Functional Analysis, 2018, 3 (1), pp.255--269. ⟨hal-01442997⟩
292 Consultations
218 Téléchargements

Partager

More