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Optimal shape design for 2D heat equations in large time

Emmanuel Trélat1, Can Zhang2,3, Enrique Zuazua4,5,6,7

Abstract

In this paper, we investigate the asymptotic behavior of optimal designs for the shape
optimization of 2D heat equations in long time horizons. The control is the shape of the
domain on which heat diffuses. The class of 2D admissible shapes is the one introduced by
S̆verák in [29], of all open subsets of a given bounded open set, whose complementary sets have
a uniformly bounded number of connected components. Using a Γ-convergence approach, we
establish that the parabolic optimal designs converge as the length of the time horizon tends to
infinity, in the complementary Hausdorff topology, to an optimal design for the corresponding
stationary elliptic equation.

Key words: shape optimization; long-time behavior; Γ-convergence, heat equation, ellip-
tic equation.

AMS subject classifications: 35K05; 49K20

1 Introduction and main result

We consider the problem of shape optimization of the heat equation in two space dimensions in the
geometric framework developed by S̆verák in [29] for the optimal design problem of elliptic equa-
tions, where optimization is performed in the class of admissible domains characterized essentially
by the fact that their complementary sets have at most a finite prescribed number of connected
components.

More precisely, the geometric setting of the admissible domains in [29] is as follows. Given a
nonempty bounded open subset D ⊂ R2 (called the design region), we denote by O the set of all
open subsets contained in D. Let ω ∈ O be an arbitrarily fixed nonempty open subset. For each
arbitrarily fixed integer N ∈ N+, we define the set of admissible designs

ONω =
{

Ω ∈ O | Ω ⊃ ω, ]Ωc 6 N
}
.

Here and in the sequel, Ωc = D̄ \ Ω is the complementary subset of Ω in D, and ]Ωc denotes the
number of its connected components.
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The aim of the shape optimization problem is to find the best shape or design of the domain
within that class to minimize some cost functional depending on the domain through the solutions of
some given PDE. This subject has been extensively studied during the last decades both for elliptic
equations and for evolution problems (see, e.g., [1, 2, 6, 10, 16, 17, 18, 20, 28, 29, 30] and references
therein). Among the methods and techniques used to solve those shape optimization problems,
calculus of variations, Hadamard shape differentiation method and homogenization theory played
a central role.

Let us now describe the specific problem that we address in the present paper.

Parabolic optimal design problem. Let T > 0 be arbitrary. For any y0 ∈ L2(D), any
f ∈ L2(D) and any z ∈ H1

0 (D), consider the problem of minimizing the time average performance

(PT ) : inf
Ω∈ON

ω

JT (Ω) =
1
T

∫ T

0

∫
ω

(
|y(t, x)− z(x)|2 + |∇y(t, x)−∇z(x)|2

)
dx dt, (1.1)

where y ∈ C
(
[0, T ];L2(Ω)

)
∩ L2(0, T ;H1

0 (Ω)) satisfies the heat equation in Ω:
∂ty −4y = f in Ω× (0, T ),
y = 0 on ∂Ω× (0, T ),
y(·, 0) = y0 in Ω.

(1.2)

Here, the control variable is the shape (or design) Ω in which the heat equation evolves, and
the heat source f in the equation is assumed to be independent of time (although more general
situations in which f depends on t but stabilizes as t→ +∞ could be treated by similar methods).
The target z = z(x) ∈ H1

0 (D) is given and, when minimizing this functional, the goal is to steer
the restriction to ω of solution of the heat equation y as close as possible to z, by an optimal choice
of the shape Ω which is the domain where the Dirichlet heat equation (1.2) is considered.

Since the domain Ω ∈ ONω is the unknown in the above minimization problem, it is useful to
note that, for the heat equation (1.2) to be well posed in the functional space C

(
[0, T ];L2(Ω)

)
∩

L2(0, T ;H1
0 (Ω)), it suffices that Ω be an open bounded subset of R2, not being necessarily of class

C2 (when Ω is C2, we have moreover y(t) ∈ H2(Ω)).
We will prove further that (PT ) has at least one minimizer ΩT ∈ ONω .
In this problem, the time horizon T is regarded as a parameter. In order to investigate the

long-time behavior of optimal designs for the problem (PT ) as T → +∞, we next consider a
reference elliptic optimal design problem.

Associated elliptic optimal design problem. For the same z ∈ H1(ω) and f ∈ L2(D) as
above, we consider the shape optimization problem

(P s) : inf
Ω∈ON

ω

Js(Ω) =
∫
ω

(
|p(x)− z(x)|2 + |∇p(x)−∇z(x)|2

)
dx, (1.3)

where p ∈ H1
0 (Ω) is the unique solution to the Poisson equation in Ω{

−4p = f in Ω,
p = 0 on ∂Ω.

(1.4)

Note that the control variable here is also the shape (or design), in which the equation is fulfilled.
We will prove further that (P s) has at least one minimizer Ωs ∈ ONω .
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Long-time behavior. For each realization of the domain Ω, the solution y(t, ·) of (1.2) converges
exponentially in H1

0 (Ω) as t→ +∞ towards the solution of (1.4).
It is then natural to conjecture that the optimal shapes ΩT for the parabolic optimal design

problem (1.1) converge (in a sense to be made precise) to optimal shapes Ωs for the elliptic optimal
design problem (1.3) as T → +∞. The objective of this paper is to show that this result holds,
indeed, in the geometric setting above in the complementary Hausdorff topology (see Section 2 for
the precise definition).

In the next section, we will introduce some notations and then briefly report on existence of
minimizers for (P s) and (PT ) for T > 0 fixed, already established in the existing literature (see,
e.g., [8, 10, 29]).

Numerical approximation issues for the optimal design problems above have been addressed in
[8, 9, 10], showing that the discrete optimal shapes (defined in a finite element context) converge in
the complementary Hausdorff topology, to an optimal shape for the continuous one as the mesh-size
tends to zero. This problem was successfully formulated and solved in [10] for 2D elliptic problems
with Dirichlet boundary conditions and later extended to the heat equation case in [8], and to the
wave equation in [7].

Our objective is to address the following two specific issues:

• Convergence of minima:
lim

T→+∞
JT = Js,

where JT and Js are the optimal values for the problems (PT ) and (P s), respectively.

• Convergence of minimizers: any closure point (in complementary Hausdorff topology) as
T → +∞ of minimizers of (PT ) is a minimizer of (P s).

Our main result hereafter solves these two questions.

Theorem 1. Given any y0 ∈ L2(D), any f ∈ L2(D) and any z ∈ H1
0 (Ω), there exists C > 0 (not

depending on the time horizon T ) such that

∣∣JT − Js∣∣ 6 C

(
1√
T

+
1
T

)
∀T > 0. (1.5)

Moreover, the problems (P s) and (PT ), for every T , have at least one minimizer, and any closure
point (in complementary Hausdorff topology) of minimizers of (PT ) as T → +∞ is a minimizer
of (P s).

In practical applications, optimal shapes are often computed on the basis of the steady-state
model, but they are then employed as quasi-optima for the time-evolving problem, often without
rigorous proofs (see, e.g., [3]). This approximation is based on the intuitive idea that, if the time-
evolving dynamics converges for long time to the steady state one, elliptic optimal shapes should
be nearly optimal for the time-evolution problem as well. From (1.5) and (3.13) (in the proof of
Theorem 1 below) we also derive the following result which justifies such an approximation.

Corollary 1. For any minimizer Ωs of (P s), we have

∣∣JT (Ωs)− JT | = O

(
1
T

)
∀T > 1.

Similar results have been established in various contexts. For instance, in [15], a shape opti-
mization problem for the heat equation was considered, in which the support of a Radon measure
on the lateral boundary was selected in an optimal way. Under certain compact assumptions, they
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first showed the existence of an optimal solution for this optimization problem. They also proved
convergence to an optimal solution of the corresponding stationary optimization problem for long
time horizons. Recently, the authors of [2] have investigated the long-time behavior of a two-phase
optimal design problem. More precisely, they considered an optimal design problem of minimiz-
ing the time average of the dissipated thermal energy during a fixed time interval [0, T ] and in a
fixed bounded domain, where the dissipation is governed by a two-phase isotropic transient heat
equation, the time independent material properties being the design variables. Via a Γ-convergence
technique and the exponential decay of the energy for the heat equation, they proved that the opti-
mal solutions of an associated relaxed design problem converge, as T → +∞, to an optimal relaxed
design of the corresponding two-phase optimization problem for the stationary heat equation.

There is a rich literature on the limiting asymptotic behavior of optimal control problems as
the time horizon goes to infinity. This problem, as previously indicated in [21], is related to the so-
called turnpike property, arising mainly in economy theory (see [13, 21, 31, 34, 35]). The work [21]
addresses the problem of long time horizon versus steady state control in the linear setting, both for
finite-dimensional models, and also PDE models, namely, the heat and the wave equations, proving
that, under suitable controllability assumptions and coercivity conditions in the cost functional,
optimal controls and controlled trajectories (resp., adjoint states) converge exponentially to the
corresponding stationary optimal controls and states (resp., adjoint states), when the time horizon
tends to infinity. This result was then extended to the more general nonlinear controlled systems
[14, 31, 32], in particular to a controlled system with a time-periodic cost [33].

Note however that the problem we address in this paper is simpler in nature since the shapes
under consideration are assumed to be time-independent.

The rest of this paper is organized as follows. In Section 2, we recall, in particular, the definitions
of the complementary Hausdorff topology and the main results in Γ-convergence. Section 3 is
devoted to the proof of Theorem 1. Finally, in Section 4 we conclude this paper with some further
comments and open problems.

2 Preliminaries

2.1 Existence of optimal designs

We first recall the definition of the Hausdorff topology and of the complementary Hausdorff topol-
ogy.

Definition 1. The Hausdorff distance between two compacts sets K1 and K2 in R2 is defined by

dH(K1,K2) = max
(

max
x∈K2

min
y∈K1

‖x− y‖, max
x∈K1

min
y∈K2

‖x− y‖
)
,

where ‖ · ‖ is the Euclidean norm in R2.

Recall that O is the set of all open subsets of D. For any Ωi ∈ O, i = 1, 2, we define the
complementary Hausdorff distance by

dHc(Ω1,Ω2) = max
(

max
x∈Ωc

2

min
y∈Ωc

1

‖x− y‖,max
x∈Ωc

1

min
y∈Ωc

2

‖x− y‖
)
,

where Ωci = D̄ \ Ωi, i = 1, 2. Then, (O, dHc(·, ·)) is a complete metric space.

We say that Ωn
Hc

−→ Ω if and only if dHc(Ωn,Ω) −→ 0, as n→ +∞.
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We refer the interested reader to [10] for properties related to the Hausdorff convergence and
facts that might seem counterintuitive. For example, the convergence of {Ωn}n>1 to Ω in the Hc

topology does not guarantee the convergence of the Lebesgue measure of Ωn to that of Ω.
For each fixed N and each open subset ω, the set of admissible designs ONω , as defined in the

introduction, is well known (see, e.g., [8, 10, 29]) to be compact for the complementary Hausdorff
topology. This implies that, for any sequence (Ωj)j>1 ofONω , there exist Ω ∈ ONω and a subsequence

{Ωk}k>1 of {Ωj}j>1 such that Ωk
Hc

−→ Ω as k → +∞.
For any Ω ⊂ O, H1

0 (Ω) is defined as the closure, for the H1
0 (Ω) topology, of all smooth functions

with compact support in Ω. Accordingly, any function of H1
0 (Ω) can be extended by 0 to a function

of H1
0 (R2) (and H1

0 (D)). Here and in the sequel, for any y ∈ H1
0 (Ω) with Ω ∈ O, we will denote

by ỹ its extension by zero to the fixed domain D.
Next, we introduce the notion of Γ-convergence for open subsets, which plays a crucial role in

the investigation of existence of optimal designs in shape optimization problems.

Definition 2. We say that Ωn
Γ−→ Ω if for any f ∈ L2(D), the solution pn of the Poisson equation{

−4pn = f in Ωn,
pn = 0 on ∂Ωn,

satisfies
p̃n −→ p̃ in H1

0 (D),

where p is the solution to {
−4p = f in Ω,

p = 0 on ∂Ω.

In general, Hc-convergence does not imply Γ-convergence. Indeed, it is well known that homog-
enization phenomena may occur at the limit, when the sequence of designs is allowed to develop
an increasing number of holes. In this case the limit of the solutions of the Dirichlet-Laplacian
may be the solution of a different elliptic problem (see, e.g., [1, 30]). Fortunately, several situa-
tions are known where the Hc-convergence does imply the Γ-convergence and the above relaxation
phenomena do not occur (see, e.g., [6, Theorem 4.6.7]). The following one is due to V. S̆verák.

Theorem 2 ([29]). Let Ω and (Ωn)n>1 belong to ONω . Then Ωn
Γ−→ Ω is equivalent to Ωn

Hc

−→ Ω.

Since ONω is compact in the complementary Hausdorff topology, from Theorem 2 we deduce
that for any sequence of designs (Ωn)n>1 ⊂ ONω , there exist Ω ∈ ONω and a subsequence (for

simplicity we still denote it in the same way), such that Ωn
Hc

−→ Ω and Ωn
Γ−→ Ω.

As corollaries of Theorem 2, the existence of minimizers of the shape optimization problem
(P s), as well as (PT ) with each T > 0, have already been established. We now state it as follows.

Proposition 1. The problem (P s) has at least one minimizer, and for any T > 0, the problem
(PT ) has at least one minimizer.

For a proof, we refer the interested reader to [29] or [10] for the elliptic optimal design problem,
and to [8] for the heat one.

Uniqueness of optimal solutions is still an open and challenging issue in the theory of shape
optimization problems. For example, the authors of [1] constructed a specific example for which
there is an infinite number of optimal designs.
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2.2 The uniform Poincaré inequality

We recall that for each open subset Ω ∈ O, the first eigenvalue λ1(Ω) for the Laplace operator −4
in Ω, with zero Dirichlet boundary conditions, is given by the Rayleigh formula (see, e.g., [5])

λ1(Ω) = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u(x)|2 dx∫

Ω
|u(x)|2 dx

.

Minimization problems for elliptic eigenvalue problems have received significant attention in the
literature since the first result by Faber and Krahn, concerning the first eigenvalue of the Laplace
operator −4 in 2D, with Dirichlet boundary conditions, among open subsets with equal area,
ensuring that λ1(Ω) > λ1(B) > 0 for every Ω ∈ O, where B is a ball in R2 with area equal to
the Lebesgue measure of D (see, e.g., [6, Chapter 6] or [17]). Consequently, the following Poincaré
inequality holds uniformly in the class of open sets O, which will play a crucial role in the proof
of Theorem 1.

Lemma 1. There exists C > 0 depending only on the area of D, such that∫
Ω

|u(x)|2 dx 6 C

∫
Ω

|∇u(x)|2 dx, (2.1)

for all Ω ∈ O and u ∈ H1
0 (Ω).

3 Proof of Theorem 1

From Proposition 1, we have seen that the shape optimization problems (P s) and (PT ), for any
fixed T > 0, have minimizers in the class of admissible shapes ONω . Based on a Γ-convergence
argument, we next prove the long-time behavior of the optimal design problems (PT ) stated in
Theorem 1. For an introduction to the theory of Γ-convergence in the calculus of variations, the
interested reader is referred to [11].

Proof of Theorem 1. We proceed in three steps.

Step 1. We first show the upper bound

JT − Js 6
C√
T

+
C

T
∀T > 0, (3.1)

for some constant C = C(|D|, ‖f‖L2(D), ‖y0‖L2(D), ‖z‖H1
0 (D)) > 0 not depending on T . Recall that

JT and Js are, respectively, the optimal values for the problems (PT ) and (P s).
Assume that Ωs ∈ ONω is an optimal design of (P s). Then Js = Js(Ωs). Since Ωs is an

admissible design of (PT ), we obviously have JT 6 JT (Ωs). Hence

JT − Js 6 JT (Ωs)− Js(Ωs). (3.2)

Now, let us assume that ps ∈ H1
0 (Ωs) is the solution of{

−4ps = f in Ωs,
ps = 0 on ∂Ωs.

(3.3)

The energy identity ensures that
∫

Ωs |∇ps(x)|2 dx =
∫

Ωs f(x)ps(x) dx. By the uniform Poincaré
inequality (2.1) in Lemma 1 and the Cauchy-Schwarz inequality, there exists C = C(|D|) > 0 such
that

‖∇ps‖L2(Ωs) 6 C‖f‖L2(D), (3.4)
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and
‖ps‖L2(Ωs) 6 C‖f‖L2(D). (3.5)

We denote by yT (·) ∈ L∞(0, T ;L2(Ωs)) ∩ L2(0, T ;H1
0 (Ωs)) the solution of

∂tyT −4yT = f(x) in Ωs × (0, T ),
yT = 0 on ∂Ωs × (0, T ),
yT (x, 0) = y0 in Ωs.

(3.6)

Let (S(t))t>0 be the C0 semigroup in L2(Ωs) generated by the Laplace operator 4 on the domain
D(4) = {u ∈ H1

0 (Ωs) | 4u ∈ L2(Ωs)}. Energy estimates ensure that ‖S(t)‖L(L2(Ωs);L2(Ωs)) 6

e−λt for every t > 0, with λ = λ(|D|) > 0. Since yT (t) = S(t)y0 +
∫ t

0
S(t − τ)f dτ for every

t ∈ [0, T ], we infer that

max
t∈[0,T ]

‖yT (t)‖L2(Ωs) 6 ‖y0‖L2(D) +
1
λ
‖f‖L2(D). (3.7)

Multiplying by yT (·) the equation (3.6) and integrating by parts, we get

1
2

(
‖yT (T )‖2L2(Ωs) − ‖y0‖2L2(Ωs)

)
+
∫ T

0

‖∇yT (t)‖2L2(Ωs) dt 6
∫ T

0

∫
Ωs

f(x)yT (x, t) dx dt

6 T‖f‖L2(D) max
t∈[0,T ]

‖yT (t)‖L2(Ωs).

Combined with (3.7), this implies that∫ T

0

‖∇yT (t)‖2L2(Ωs) dt 6 CT, (3.8)

for some constant C = C(|D|, ‖f‖L2(D), ‖y0‖L2(D)) > 0 not depending on T .
Next, we set δyT (t) = yT (t)−ps, for every t ∈ [0, T ]. It follows from (3.3) and (3.6) that δyT (·)

is solution of the heat equation in Ωs,
∂tδyT −4δyT = 0 in Ωs × (0, T ),
δyT = 0 on ∂Ωs × (0, T ),
δyT (x, 0) = y0 − ps in Ωs.

It is easy to see that there exists C(|D|) > 0 (not depending on T ) such that
∫ T

0
‖δyT (t)‖L2(Ωs) dt 6

C(|D|)‖y0 − ps‖L2(Ωs) and
∫ T

0
‖∇δyT (t)‖2L2(Ωs) dt 6 ‖y0 − ps‖L2(Ωs). These last two inequalities,

combined with (3.4), imply that∫ T

0

‖δyT (t)‖L2(Ωs) dt+
∫ T

0

‖∇δyT (t)‖2L2(Ωs) dt 6 C, (3.9)

for some constant C = C(|D|, ‖f‖L2(D), ‖y0‖L2(D)) > 0 not depending on T .
Note that

JT (Ωs)− Js(Ωs) = I1 + I2 (3.10)

with

I1 =
1
T

∫ T

0

(
‖yT (t)− z‖L2(ω) + ‖ps − z‖L2(ω)

) (
‖yT (t)− z‖L2(ω) − ‖ps − z‖L2(ω)

)
dt

7



and

I2 =
1
T

∫ T

0

(
‖∇yT (t)−∇z‖L2(ω) + ‖∇ps −∇z‖L2(ω)

) (
‖∇yT (t)−∇z‖L2(ω) − ‖∇ps −∇z‖L2(ω)

)
dt.

We first estimate the term I1 as follows. By the triangle inequality∣∣∣‖yT (t)− z‖L2(ω) − ‖ps − z‖L2(ω)

∣∣∣ 6 ‖yT (t)− ps‖L2(ω) 6 ‖δyT (t)‖L2(Ωs),

we get that

|I1| 6
1
T

(
max
t∈[0,T ]

‖yT (t)‖L2(Ωs) + ‖ps‖L2(Ωs) + 2‖z‖L2(ω)

)∫ T

0

‖δyT (t)‖L2(Ωs) dt.

This, together with (3.4), (3.7) and (3.9), leads to

|I1| 6
C

T
, (3.11)

for some constant C = C(|D|, ‖f‖L2(D), ‖y0‖L2(D), ‖z‖L2(ω)) > 0. Similarly, the term I2 is esti-
mated by

|I2| 6
1
T

(∫ T

0

(
‖∇yT (t)‖L2(ω) + ‖∇ps‖L2(ω) + 2‖∇z‖2L2(ω)

)2
dt

)1/2(∫ T

0

‖∇δyT (t)‖2L2(Ωs) dt

)1/2

.

Combined with (3.4), (3.8) and (3.9), this implies that

|I2| 6
C√
T
, (3.12)

for some constant C = C(|D|, ‖f‖L2(D), ‖y0‖L2(D), ‖∇z‖L2(ω)) > 0. Therefore, we obtain from
(3.10), (3.11) and (3.12) that ∣∣JT (Ωs)− Js(Ωs)

∣∣ 6 C√
T

+
C

T
, (3.13)

with C > 0 as above (not depending on T ). The estimate (3.1) now follows from (3.2) and (3.13).

Step 2. Let us establish the lower estimate

JT − Js > −
(
C√
T

+
C

T

)
∀T > 0, (3.14)

for some constant C = C(|D|, ‖y0‖L2(D), ‖f‖L2(D), ‖z‖H1(ω)) > 0 not depending on T .
For any T > 0, we assume that ΩT ∈ ONω is a minimizer of (PT ). Reasoning as in (3.2), we

have
JT − Js > JT (ΩT )− Js(ΩT ). (3.15)

Let yT ∈ L∞
(
0, T ;L2(ΩT )

)
∩L2

(
0, T ;H1

0 (ΩT )
)

be the corresponding solution to the optimal design
ΩT for the problem (PT ). Using the arguments employed to obtain the estimates (3.7) and (3.8),
we also have that

max
t∈[0,T ]

‖yT (t)‖L2(ΩT ) 6 C, (3.16)
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and ∫ T

0

‖∇yT (t)‖2L2(ΩT ) dt 6 CT,

for some constant C = C(|D|, ‖f‖L2(D), ‖y0‖L2(D)) > 0 not depending on T .
Now, let pT ∈ H1

0 (ΩT ) be the solution of{
−4pT = f in ΩT ,

pT = 0 on ∂ΩT .

By the uniform Poincaré inequality (2.1), as in (3.4) and (3.5), there exists C = C(|D|) > 0 (not
depending on T ) such that

‖∇pT ‖L2(ΩT ) 6 C‖f‖L2(D),

and
‖pT ‖L2(ΩT ) 6 C‖f‖L2(D). (3.17)

Then δyT (t) = yT (t) − pT , t ∈ [0, T ] is solution of the heat equation on ΩT . Reasoning as in
(3.9), we obtain that∫ T

0

‖δyT (t)‖L2(ΩT ) dt+
∫ T

0

‖∇δyT (t)‖2L2(ΩT ) dt 6 C ∀T > 0, (3.18)

for some constant C = C(|D|, ‖y0‖L2(D), ‖f‖L2(D)) > 0.
We now write JT (ΩT )− Js(ΩT ) = I3 + I4 with

I3 =
1
T

∫ T

0

(
‖yT (t)− z‖L2(ω) + ‖pT − z‖L2(ω)

) (
‖yT (t)− z‖L2(ω) − ‖pT − z‖L2(ω)

)
dt, (3.19)

and

I4 =
1
T

∫ T

0

(
‖∇yT (t)−∇z‖L2(ω) + ‖∇pT −∇z‖L2(ω)

) (
‖∇yT (t)−∇z‖L2(ω) − ‖∇pT −∇z‖L2(ω)

)
dt.

For any t ∈ (0, T ), by the triangle inequality,∣∣∣‖yT (t)− z‖L2(ω) − ‖pT − z‖L2(ω)

∣∣∣ 6 ‖yT (t)− pT ‖L2(ω) 6 ‖δyT (t)‖L2(ΩT ),

and from (3.19) we see that

|I3| 6
1
T

(
max
t∈[0,T ]

‖yT (t)‖L2(ΩT ) + ‖pT ‖L2(ΩT ) + 2‖z‖L2(ω)

)∫ T

0

‖δyT (t)‖L2(ΩT ) dt. (3.20)

This, together with (3.16), (3.17) and (3.18), implies that |I3| 6 C/T for some constant C =
C(|D|, ‖y0‖L2(D), ‖f‖L2(D), ‖z‖L2(ω)) not depending on T . Also, similar arguments as those for
(3.12) lead to

|I4| 6
C√
T

(3.21)

for some constant C = C(|D|, ‖y0‖L2(D), ‖f‖L2(D), ‖∇z‖L2(ω)) > 0.
Hence, it follows from (3.20) and (3.21) that∣∣JT (ΩT )− Js(ΩT )

∣∣ 6 C

(
1√
T

+
1
T

)
∀T > 0, (3.22)

for some constant C = C(|D|, ‖y0‖L2(D), ‖f‖L2(D), ‖z‖H1(ω)) > 0. Combined with (3.15), this
implies (3.14).

From Steps 1 and 2, the estimate (1.5) is now established.
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Step 3. Finally, we now establish the long-time behavior of minimizers of (PT ). Let (Tn)n>1 be
an increasing sequence of positive times such that limn→+∞ Tn = +∞. For each Tn, we assume that
ΩTn ∈ ONω is an optimal design for (PTn). Since ONω is compact in the complementary Hausdorff
topology, up to a subsequence (still denoted with the same notation), there exists Ω∗ ∈ ONω such

that ΩTn
Hc

−→ Ω∗. Our goal is to show that Ω∗ is an optimal design for (P s), i.e., that Js(Ω∗) = Js.
From Theorem 2, we have ΩTn

γ−→ Ω∗. In other words, the solution pn ∈ H1
0 (ΩTn) of{

−4pn = f in ΩTn ,

pn = 0 on ∂ΩTn

satisfies p̃n −→ p̃∗ in H1
0 (D) as n→ +∞, where p∗ ∈ H1

0 (Ω∗) is the solution of{
−4p∗ = f in Ω∗,

p∗ = 0 on ∂Ω∗

Hence,
Js(ΩTn)→ Js(Ω∗) as n→ +∞. (3.23)

Note that, for any n ∈ N, we have JTn = JTn(ΩTn) and∣∣Js − Js(Ω∗)∣∣ 6 ∣∣Js − JTn
∣∣+
∣∣JTn(ΩTn)− Js(ΩTn)

∣∣+
∣∣Js(ΩTn)− Js(Ω∗)

∣∣.
By letting n tend to infinity in the above inequality, we get from (1.5), (3.22) and (3.23) that
Js(Ω∗) = Js. This completes the proof.

4 Conclusions and further comments

In this paper, we have established by Γ-convergence techniques that the optimal designs for heat
equations converge, as the time horizon tends to infinity, towards an optimal design of the corre-
sponding design problem for the elliptic Poisson equation, in the sense of complementary Hausdorff
topology.

Several remarks are in order.

More general operators. In this paper, we fully rely on the geometric setting of admissible
designs and on the results established in [29], and therefore our convergence result is restricted
to 2D Dirichlet problem. Although we only considered the Dirichlet-Laplacian operator, by the
same techniques, it is likely that the results of this paper also hold for more general 2D elliptic
operators in divergence form with Dirichlet boundary conditions, and for 2D elliptic Stokes system
with Dirichlet boundary conditions. We refer the reader to [6, 10, 29], for instance, for a discussion
of elliptic optimal design problems for those models.

Higher dimension. The method developed here may certainly be adapted to deal with the heat
equation in higher dimension, in an appropriate class of admissible domains. Note that the proof
of our main result relies on the following two key facts:

(i) Compactness of admissible domains in the complementary Hausdorff topology. Compactness
holds in higher dimension in more restricted classes of domains obtained, for instance, by
imposing uniform BV -norm of the boundaries, on the perimeter, or by imposing the uniform
exterior cone property (see, e.g., [6] and [24, Page 1083]).
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(ii) The Γ-convergence property of domains, allowing to pass to the limit on the solutions of the
Dirichlet elliptic problem. It can be guaranteed to hold, for instance, in the class of convex
sets, the class of domains satisfying a uniform exterior cone property, or the class of domains
satisfying a uniform capacity density condition (see [6, Theorem 4.6.7]).

Damped wave equation. Our results and proofs heavily rely on the exponential decay of the
energy for the heat equation in a given domain. Accordingly, our methods also apply for the shape
optimization of strongly damped wave equations in the geometric setting by S̆verák (see [7] for the
extension of results in [29] to the wave equation).

However, because of the lack of exponential decay for conservative Schrödinger and wave equa-
tions, the long-time behavior of shape optimization for these two equations is an open problem.
In fact, for conservative problems, it could well be that the optimal shapes ΩT reproduce the
oscillatory pattern of solutions as T increases.

Time-dependent source term. The right-hand side term f has been taken to be independent
of t. But, as mentioned in the introduction, one could also consider time-varying forcing terms
f = f(t, x) under the condition that they converge exponentially to a steady applied force f∗ as
t→ +∞.

Convergence rates. We proved that the optimal designs for heat equations converge, as the
time horizon tends to infinity, towards an optimal one for the stationary heat equation. Obtaining
convergence rates is of interest, but this subject is completely open.

This issue is even open for simpler problems. For instance, in [22], an optimal control problem in
a fixed domain, with an applied right-hand side time-independent forcing control, was considered
for a semilinear heat equation. By Γ-convergence arguments, optimal controls were proved to
converge to the steady-state ones. But convergence rates have not been derived.

Using the optimality system and Linear Quadratic Riccati theory, by means of perturbations
arguments, convergence rates were proved under suitable smallness conditions on the target for
semilinear heat equations. Optimality conditions could also be useful in the context of shape
optimization. But they usually require a more limited geometric setting so that Hadamard shape
derivatives can be employed (see, e.g., [17, 26, 27, 28]). Whether this suffices to achieve convergence
rates is an interesting open problem.

Shape turnpike. In the context of time-varying shapes, the turnpike problem is completely
open (see [31, 32, 33]). The possible stabilization of optimal designs in large time, when allowing
the design to evolve in time as well as the evolution problem, is a much more complex problem
than the one we addressed here.

Initial data fixed or not. We have worked with fixed initial data and right-hand side terms
but one could consider more general situations. For instance, there are at least two possible ways
to allow the initial data to vary:

(i) Initial data depend (only) on the time horizon T and are all bounded uniformly.

(ii) Initial data vary, for instance, in the unit ball B1 of L2(D). One can then define the optimal
design problem in some uniform manner with respect to all these initial data, by considering
the min-max cost

min
Ω∈ON

ω

max
y0∈B1

JT (Ω, y0).
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Since the constants in the proof of Theorem 1 depend on the L2-norm of the initial data, the
method of this paper can be applied to handle these problems.

It would also be interesting to consider shape optimization problems (and turnpike issues) for
the heat equation with random initial data.

Randomization has been shown to be a useful tool for a number of optimal shape design
problems (see [23, 24, 25]). In these works the PDE was formulated on a fixed reference domain
and the shapes to be optimized were the location of sensors and actuators. Through randomization,
the average value of the cost functional turned out to have a spectrally diagonal structure. But, in
these papers, the fact that the PDE under consideration was settled on a fixed domain Ω played
an important role, since this allowed the randomization procedure to be defined in the basis of
eigenfunctions of the Dirichlet-Laplacian on this domain. However, in the present context, the
domain where the PDE holds varies, being the control variable. The way of randomization needs
to be implemented so as to simplify the cost under consideration is an interesting open problem.

Terminal constraints. We have treated the shape optimization problem by letting the terminal
state y(T ) free. It would be interesting to address similar problems in the context of controllability,
the goal being to drive the solution to some given target, employing time-varying shapes t→ Ω(t)
as controls. The problem of controlling the Schrödinger equation using the shape of the domain as
control parameter has been analyzed, for instance, in [4, 19]. There is plenty of issues to investigate
in that setting for heat-like equations and in particular to investigate the turnpike property.
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