Visual Object Categorization via Sparse Representation - Archive ouverte HAL
Conference Papers Year : 2009

Visual Object Categorization via Sparse Representation

Abstract

In this paper, we consider the problem of classifying a real world image to the corresponding object class based on its visual content via sparse representation, which is originally used as a powerful tool for acquiring, representing and compressing high-dimensional signals. Assuming the intuitive hypothesis that an image could be represented by a linear combination of the training images from the same class, we propose a novel approach for visual object categorization in which a sparse representation of the image is first of all obtained by solving a l1 or l0-minimization problem and then fed into a traditional classifier such as Support Vector Machine (SVM) to finally perform the specified task. Experimental results obtained on the SIMPLIcity database have shown that this new approach can improve the classification performance compared to standard SVM using directly features extracted from the image.
No file

Dates and versions

hal-01437773 , version 1 (17-01-2017)

Identifiers

Cite

Huanzhang Fu, Chao Zhu, Emmanuel Dellandréa, Charles-Edmond Bichot, Liming Chen. Visual Object Categorization via Sparse Representation. International Conference on Image and Graphics (ICIG), Sep 2009, Xi'an, China. pp.943-948, ⟨10.1109/ICIG.2009.100⟩. ⟨hal-01437773⟩
114 View
0 Download

Altmetric

Share

More