Self noise and contrast controlled thinning of gray images - Archive ouverte HAL
Article Dans Une Revue Pattern Recognition Année : 2016

Self noise and contrast controlled thinning of gray images

Résumé

Homotopic grayscale thinning leads to " over-connected skeleton " when applied on noisy images. One way to avoid this phenomenon is the parametric thinning. It consists in relaxing the initial constraint by lowering low contrast crests, peaks and ends, according to a manually selected parameter and under the constraint of ascendant gray level processing. We propose to control this parameter by considering the lowering decision in a statistical framework of hypothesis test under the assumption of an additive Gaussian noise. A unitary hypothesis test based on the minimum test statistic is used for the elimination of peaks and noise related extremities, while a fusion of multiple tests is required for the insignificant crest lowering decision. This leads to a local adjustment and a standardization of the parametric thinning process that depends only on the chosen significance level of the test.
Fichier principal
Vignette du fichier
Manuscript_Rabaa_Youssef.pdf (3.26 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01436709 , version 1 (16-01-2017)

Identifiants

Citer

Rabaa Youssef, Sylvie Sevestre-Ghalila, Anne Ricordeau, Amel Benazza. Self noise and contrast controlled thinning of gray images. Pattern Recognition, 2016, 57, pp.97 - 114. ⟨10.1016/j.patcog.2016.03.033⟩. ⟨hal-01436709⟩
100 Consultations
159 Téléchargements

Altmetric

Partager

More