Two Evidential Data Based Models for Influence Maximization in Twitter - Archive ouverte HAL
Article Dans Une Revue Knowledge-Based Systems Année : 2017

Two Evidential Data Based Models for Influence Maximization in Twitter

Résumé

Influence maximization is the problem of selecting a set of influential users in the social network. Those users could adopt the product and trigger a large cascade of adoptions through the " word of mouth " effect. In this paper, we propose two evidential influence maximization models for Twitter social network. The proposed approach uses the theory of belief functions to estimate users influence. Furthermore, the proposed influence estimation measure fuses many influence aspects in Twitter, like the importance of the user in the network structure and the popularity of user's tweets (messages). In our experiments, we compare the proposed solutions to existing ones and we show the performance of our models.
Fichier principal
Vignette du fichier
InfluenceMaximizationV008.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01435733 , version 1 (15-01-2017)

Identifiants

Citer

Siwar Jendoubi, Arnaud Martin, Ludovic Liétard, Hend Ben Hadji, Boutheina Ben Yaghlane. Two Evidential Data Based Models for Influence Maximization in Twitter. Knowledge-Based Systems, 2017, ⟨10.1016/j.knosys.2017.01.014⟩. ⟨hal-01435733⟩
365 Consultations
319 Téléchargements

Altmetric

Partager

More