Metamodel construction for sensitivity analysis - Archive ouverte HAL
Article Dans Une Revue ESAIM: Proceedings Année : 2017

Metamodel construction for sensitivity analysis

Résumé

We propose to estimate a metamodel and the sensitivity indices of a complex model m in the Gaussian regression framework. Our approach combines methods for sensitivity analysis of complex models and statistical tools for sparse non-parametric estimation in multivariate Gaussian regression model. It rests on the construction of a metamodel for aproximating the Hoeffding-Sobol decomposition of m. This metamodel belongs to a reproducing kernel Hilbert space constructed as a direct sum of Hilbert spaces leading to a functional ANOVA decomposition. The estimation of the metamodel is carried out via a penalized least-squares minimization allowing to select the subsets of variables that contribute to predict the output. It allows to estimate the sensitivity indices of m. We establish an oracle-type inequality for the risk of the estimator, describe the procedure for estimating the metamodel and the sensitivity indices, and assess the performances of the procedure via a simulation study.
Fichier principal
Vignette du fichier
prepub.pdf (345.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01434895 , version 1 (30-01-2017)
hal-01434895 , version 2 (18-11-2019)

Identifiants

  • HAL Id : hal-01434895 , version 1

Citer

Sylvie Huet, Marie-Luce Taupin. Metamodel construction for sensitivity analysis. ESAIM: Proceedings, 2017, Journées MAS 2016 de la SMAI – Phénomènes complexes et hétérogènes, Volume 60, 2017 (60), pp.27-69. ⟨hal-01434895v1⟩
253 Consultations
122 Téléchargements

Partager

More