Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model - Archive ouverte HAL
Article Dans Une Revue Reliability Engineering and System Safety Année : 2015

Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model

Résumé

The study makes use of polynomial chaos expansions to compute Sobol’ indices within the frame of a global sensitivity analysis of hydrodispersive parameters in a simplified vertical cross-section of a segment of the subsurface of the Paris Basin. Applying conservative ranges, the uncertainty in 78 input variables is propagated upon the mean lifetime expectancy of water molecules departing from a specific location within a highly confining layer situated in the middle of the model domain. Lifetime expectancy is a hydrogeological performance measure pertinent to safety analysis with respect to subsurface contaminants, such as radionuclides. The sensitivity analysis indicates that the variability in the mean lifetime expectancy can be sufficiently explained by the uncertainty in the petrofacies, i.e. the sets of porosity and hydraulic conductivity, of only a few layers of the model. The obtained results provide guidance regarding the uncertainty modeling in future investigations employing detailed numerical models of the subsurface of the Paris Basin. Moreover, the study demonstrates the high efficiency of sparse polynomial chaos expansions in computing Sobol’ indices for high-dimensional models.
Fichier principal
Vignette du fichier
RSUQ-2015-001B.pdf (3.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01432217 , version 1 (11-01-2017)

Identifiants

Citer

G. Deman, K. Konakli, B. Sudret, J Kerrou, P. Perrochet, et al.. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model. Reliability Engineering and System Safety, 2015, 147, pp.156 - 169. ⟨10.1016/j.ress.2015.11.005⟩. ⟨hal-01432217⟩

Collections

CNRS
73 Consultations
96 Téléchargements

Altmetric

Partager

More