Compact nanosecond laser system for the ignition of aeronautic combustion engines - Archive ouverte HAL Access content directly
Journal Articles Journal of Applied Physics Year : 2016

Compact nanosecond laser system for the ignition of aeronautic combustion engines

Abstract

We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 µJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at a 1 kHz repetition rate, it delivers TEM 00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 µJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ=808 nm and coupled to a 800 µm core multimode fiber. At a 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.
Fichier principal
Vignette du fichier
Amiard-HudebineJAP2016_Postprint.pdf (537.44 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01428964 , version 1 (06-01-2017)

Licence

Attribution - ShareAlike

Identifiers

Cite

G. Amiard-Hudebine, G. Tison, E. Freysz. Compact nanosecond laser system for the ignition of aeronautic combustion engines. Journal of Applied Physics, 2016, 120 (23), pp.233102. ⟨10.1063/1.4971964⟩. ⟨hal-01428964⟩

Collections

CNRS LOMA ANR
129 View
252 Download

Altmetric

Share

Gmail Facebook X LinkedIn More