Small obstacle asymptotics for a 2D semi-linear convex problem - Archive ouverte HAL
Article Dans Une Revue Applicable Analysis Année : 2017

Small obstacle asymptotics for a 2D semi-linear convex problem

Résumé

We study a 2D semi-linear equation in a domain with a small Dirichlet obstacle of size δ. Using the method of matched asymptotic expansions, we compute an asymptotic expansion of the solution as δ tends to zero. Its relevance is justified by proving a rigorous error estimate. Then we construct an approximate model, based on an equation set in the limit domain without the small obstacle, which provides a good approximation of the far field of the solution of the original problem. The interest of this approximate model lies in the fact that it leads to a variational formulation which is very simple to discretize. We present numerical experiments to illustrate the analysis.
Fichier principal
Vignette du fichier
ClaeysChesnelNazarov3.pdf (447.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01427617 , version 1 (05-01-2017)

Identifiants

Citer

Lucas Chesnel, Xavier Claeys, Sergei A Nazarov. Small obstacle asymptotics for a 2D semi-linear convex problem. Applicable Analysis, 2017, pp.20. ⟨10.1080/00036811.2017.1295449⟩. ⟨hal-01427617⟩
852 Consultations
283 Téléchargements

Altmetric

Partager

More