Solvable groups of interval exchange transformations - Archive ouverte HAL
Article Dans Une Revue Annales de la Faculté des Sciences de Toulouse. Mathématiques. Année : 2020

Solvable groups of interval exchange transformations

François Dahmani
Koji Fujiwara
  • Fonction : Auteur
  • PersonId : 997268

Résumé

We prove that any finitely generated torsion free solvable subgroup of the group ${\rm IET}$ of all Interval Exchange Transformations is virtually abelian. In contrast, the lamplighter groups $A\wr \mathbb{Z}^k$ embed in ${\rm IET}$ for every finite abelian group $A$, and we construct uncountably many non pairwise isomorphic 3-step solvable subgroups of ${\rm IET}$ as semi-direct products of a lamplighter group with an abelian group. We also prove that for every non-abelian finite group $F$, the group $F\wr \mathbb{Z}^k$ does not embed in ${\rm IET}$.

Dates et versions

hal-01426353 , version 1 (04-01-2017)

Identifiants

Citer

François Dahmani, Koji Fujiwara, Vincent Guirardel. Solvable groups of interval exchange transformations. Annales de la Faculté des Sciences de Toulouse. Mathématiques., 2020, 29 (3), pp.595-618. ⟨10.5802/afst.1641⟩. ⟨hal-01426353⟩
346 Consultations
0 Téléchargements

Altmetric

Partager

More