A Noise-Robust Method with Smoothed L1/L 2 Regularization for Sparse Moving-Source Mapping - Archive ouverte HAL
Article Dans Une Revue Signal Processing Année : 2016

A Noise-Robust Method with Smoothed L1/L 2 Regularization for Sparse Moving-Source Mapping

Résumé

The method described here performs blind deconvolution of the beamforming output in the frequency domain. To provide accurate blind deconvolution, sparsity priors are introduced with a smoothed 1 // 2 regularization term. As the mean of the noise in the power spectrum domain depends on its variance in the time domain, the proposed method includes a variance estimation step, which allows more robust blind deconvolution. Validation of the method on both simulated and real data, and of its performance, are compared with two well-known methods from the literature: the deconvolution approach for the mapping of acoustic sources, and sound density modeling.
Fichier principal
Vignette du fichier
2016_Signal Processing_localisation_Pham_Mai.pdf (971.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01426251 , version 1 (04-01-2017)

Identifiants

Citer

Mai Quyen I Pham, Benoit Oudompheng, Jerome I. Mars, Barbara Nicolas. A Noise-Robust Method with Smoothed L1/L 2 Regularization for Sparse Moving-Source Mapping. Signal Processing, 2016, 135 (June 2017), pp.96-106. ⟨10.1016/j.sigpro.2016.12.022⟩. ⟨hal-01426251⟩
385 Consultations
447 Téléchargements

Altmetric

Partager

More