A Hybrid Data Mining Approach for the Identification of Biomarkers in Metabolomic Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

A Hybrid Data Mining Approach for the Identification of Biomarkers in Metabolomic Data

Blandine Comte
Estelle Pujos-Guillot
Amedeo Napoli

Résumé

In this paper, we introduce an approach for analyzing complex biological data obtained from metabolomic analytical platforms. Such platforms generate massive and complex data that need appropriate methods for discovering meaningful biological information. The datasets to analyze consist in a limited set of individuals and a large set of attributes (variables). In this study, we are interested in mining metabolomic data to identify predictive biomarkers of metabolic diseases, such as type 2 diabetes. Our experiments show that a combination of numerical methods, e.g. SVM, Random Forests (RF), and ANOVA, with a symbolic method such as FCA, can be successfully used for discovering the best combination of predictive features. Our results show that RF and ANOVA seem to be the best suited methods for feature selection and discovery. We then use FCA for visualizing the markers in a suggestive and interpretable concept lattice. The outputs of our experiments consist in a short list of the 10 best potential predictive biomarkers.
Fichier principal
Vignette du fichier
CLApaperGrissa.pdf (934.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01421015 , version 1 (21-12-2016)

Identifiants

  • HAL Id : hal-01421015 , version 1

Citer

Dhouha Grissa, Blandine Comte, Estelle Pujos-Guillot, Amedeo Napoli. A Hybrid Data Mining Approach for the Identification of Biomarkers in Metabolomic Data. Concept Lattices and Their Applications, Jul 2016, Moscou, Russia. ⟨hal-01421015⟩
567 Consultations
143 Téléchargements

Partager

More