Hierarchical approach for deriving a reproducible unblocked LU factorization - Archive ouverte HAL
Article Dans Une Revue International Journal of High Performance Computing Applications Année : 2019

Hierarchical approach for deriving a reproducible unblocked LU factorization

Résumé

We propose a reproducible variant of the unblocked LU factorization for graphics processor units (GPUs). For this purpose, we build upon Level-1/2 BLAS kernels that deliver correctly-rounded and reproducible results for the dot (inner) product, vector scaling, and the matrix-vector product. In addition, we draw a strategy to enhance the accuracy of the triangular solve via iterative refinement. Following a bottom-up approach, we finally construct a reproducible unblocked implementation of the LU factorization for GPUs, which accommodates partial pivoting for stability and can be eventually integrated in a high performance and stable algorithm for the (blocked) LU factorization.
Fichier principal
Vignette du fichier
reprolu.pdf (456.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01419813 , version 1 (20-12-2016)
hal-01419813 , version 2 (03-01-2017)
hal-01419813 , version 3 (02-02-2017)
hal-01419813 , version 4 (18-04-2017)

Identifiants

Citer

Roman Iakymchuk, Stef Graillat, David Defour, Enrique S Quintana-Ortí. Hierarchical approach for deriving a reproducible unblocked LU factorization. International Journal of High Performance Computing Applications, 2019, pp.#1094342019832968. ⟨10.1177/1094342019832968⟩. ⟨hal-01419813v4⟩
742 Consultations
448 Téléchargements

Altmetric

Partager

More