Stable recovery of the factors from a deep matrix product - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Stable recovery of the factors from a deep matrix product

Résumé

We study a deep matrix factorization problem. It takes as input the matrix $X$ obtained by multiplying $K$ matrices (called factors) and aims at recovering the factors. When $K=1$, this is the usual compressed sensing framework; $K=2$: Examples of applications are dictionary learning, blind deconvolution, self-calibration; $K\geq 3$: can be applied to many fast transforms (such as the FFT). In particular, we apply the theorems to deep convolutional network. Using a Lifting, we provide : a necessary and sufficient conditions for the identifiability of the factors (up to a scale indeterminacy); - an analogue of the Null-Space-Property, called the Deep-Null-Space-Property which is necessary and sufficient to guarantee the stable recovery of the factors.
Fichier principal
Vignette du fichier
spars2017.pdf (206.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01417943 , version 1 (16-12-2016)
hal-01417943 , version 2 (20-03-2017)

Identifiants

  • HAL Id : hal-01417943 , version 2

Citer

François Malgouyres, Joseph Landsberg. Stable recovery of the factors from a deep matrix product. Signal Processing with Adaptive Sparse Structured Representations (SPARS) , 2017, Lisbonne, Portugal. ⟨hal-01417943v2⟩
224 Consultations
140 Téléchargements

Partager

More