Requirement Mining for Model-Based Product Design - Archive ouverte HAL
Article Dans Une Revue International Journal of Product Lifecycle Management Année : 2016

Requirement Mining for Model-Based Product Design

Résumé

PLM software applications should enable engineers to develop and manage requirements throughout the product’s lifecycle. However, PLM activities of the beginning-of-life and end-of-life of a product mainly deal with a fastidious document-based approach. Indeed, requirements are scattered in many different prescriptive documents (reports, specifications, standards, regulations, etc.) that make the feeding of a requirements management tool laborious. Our contribution is two-fold. First, we propose a natural language processing (NLP) pipeline to extract requirements from prescriptive documents. Second, we show how machine learning techniques can be used to develop a text classifier that will automatically classify requirements into disciplines. Both contributions support companies willing to feed a requirements management tool from prescriptive documents. The NLP experiment shows an average precision of 0.86 and an average recall of 0.95, whereas the SVM requirements classifier outperforms that of naive Bayes with a 76% accuracy rate.
Fichier principal
Vignette du fichier
IJPLM090402 PINQUIE_cleaned.pdf (3.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01409205 , version 1 (05-12-2016)

Identifiants

  • HAL Id : hal-01409205 , version 1
  • ENSAM : http://hdl.handle.net/10985/11385

Citer

Romain Pinquié, Philippe Véron, Frédéric Segonds, Nicolas Croué. Requirement Mining for Model-Based Product Design. International Journal of Product Lifecycle Management, 2016, 9 (4), pp.305-332. ⟨hal-01409205⟩
188 Consultations
317 Téléchargements

Partager

More