Apprentissage d’intégrales de Sugeno à partir de données inconsistantes
Résumé
The basic setting of this article is multicriteria decision making and preference aggregation. The problem treated is that of learning a Sugeno integral from inconsistent data, where values are elements of a totally ordered set. This is a difficult optimization problem : indeed, a Sugeno integral is determined by 2^n values, with n being the number pf parameters. In this article we propose two learning methods : the first one is an application of simulated annealing, and the second is a new algorithm which relies on the selection of a consistant subset of data and for which the value of n doesn't affect the running time significantly.
En prenant pour cadre de référence l'aidè a la décision multi-critères et l'agrégation de préférences, cet article traite de l'apprentissage de l'intégrale de Sugenò a partir de données inconsistantes, et dont les valeurs appartiennent à un ensemble totalement ordonné. Il s'agit d'un problème d'optimisation difficile, puisqu'une intégrale de Sugeno est définie d'après 2^n valeurs, où n est le nombre de paramètres. Dans cet article nous considérons deux méthodes : la premìère est une application du recuit simulé, et la seconde est un nouvel algorithme reposant sur la séléction préalable d'un sous-ensemble de données consistantes, dont le temps d'exécution est peu sensible à la valeur de n.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...