Organic matrices in metazoan calcium carbonate skeletons: composition, functions, evolution. - Archive ouverte HAL
Article Dans Une Revue Journal of Structural Biology Année : 2016

Organic matrices in metazoan calcium carbonate skeletons: composition, functions, evolution.

Résumé

Calcium carbonate skeletal tissues in metazoans comprise a small quantity of occluded organic macromolecules, mostly proteins and polysaccharides that constitute the skeletal matrix. Because its functions in modulating the biomineralization process are well known, the skeletal matrix has been extensively studied, successively via classical biochemical approaches, via molecular biology and, in recent years, via transcriptomics and proteomics. The optimistic view that the deposition of calcium carbonate minerals requires a limited number of macromolecules has been challenged, in the last decade, by high-throughput approaches. Such approaches have made possible the rapid identification of large sets of mineral-associated proteins, i.e., ‘skeletal repertoires’ or ‘skeletomes’, in several calcifying animal models, ranging from sponges to echinoderms. One of the consequences of this expanding set of data is that a simple definition of the skeletal matrix is no longer possible. This increase in available data, however, makes it easier to compare skeletal repertoires, shedding light on the fundamental evolutionary mechanisms affecting matrix components.

Domaines

Biomatériaux
Fichier non déposé

Dates et versions

hal-01403916 , version 1 (28-11-2016)

Identifiants

Citer

Frédéric Marin, Irina Bundeleva, Takeshi Takeuchi, Françoise Immel, Davorin Medakovic. Organic matrices in metazoan calcium carbonate skeletons: composition, functions, evolution.. Journal of Structural Biology, 2016, 196 (2), pp.98-106. ⟨10.1016/j.jsb.2016.04.006⟩. ⟨hal-01403916⟩
82 Consultations
0 Téléchargements

Altmetric

Partager

More