Wave-Mixing Origin and Optimization in Single and Compact Aluminum Nanoantennas - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue ACS photonics Année : 2016

Wave-Mixing Origin and Optimization in Single and Compact Aluminum Nanoantennas

Mathieu Jeannin
Serge Huant
  • Fonction : Auteur
  • PersonId : 957039
Géraldine Dantelle
Guillaume Bachelier
  • Fonction : Auteur
  • PersonId : 974229

Résumé

The outstanding optical properties for plasmon resonances in noble metal nanopar-ticles enable the observation of non-linear optical processes such as second-harmonic generation (SHG) at the nanoscale. Here, we investigate the SHG process in single rectangular aluminum nanoantennas and demonstrate that i) a doubly resonant regime can be achieved in very compact nanostructures, yielding a 7.5 enhancement compared to singly resonant structures and ii) the χ ⊥⊥⊥ local surface and γ bulk nonlocal bulk contributions can be separated while imaging resonant nanostructures excited by a tightly focused beam, provided the χ ⊥⊥⊥ local surface is assumed to be zero, as it is the case in all existing models for metals. Thanks to the quantitative agreement between experimental and simulated far-eld SHG maps, taking into account the real experimental conguration (focusing and substrate), we identify the physical origin of the SHG in aluminum nanoantennas as arising mainly from χ ⊥⊥⊥ local surface sources.
Fichier principal
Vignette du fichier
EthisDeCorny_160823_submitted.pdf (3.04 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01400052 , version 1 (25-11-2016)

Identifiants

Citer

Maeliss Ethis de Corny, Nicolas Chauvet, Guillaume Laurent, Mathieu Jeannin, Logi Olgeirsson, et al.. Wave-Mixing Origin and Optimization in Single and Compact Aluminum Nanoantennas. ACS photonics, 2016, 3 (10), pp.1840 - 1846. ⟨10.1021/acsphotonics.6b00351⟩. ⟨hal-01400052⟩

Collections

UGA CNRS NEEL ANR
86 Consultations
92 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More