Dense granular flow rheology in turbulent bedload transport
Résumé
The local granular rheology is investigated numerically in turbulent bedload transport. Considering spherical particles, steady uniform configurations are simulated using a coupled fluid-discrete-element model. The stress tensor is computed as a function of the depth for a series of simulations varying the Shields number, the specific density and the particle diameter. The results are analyzed in the framework of the µ(I) rheology and exhibit a collapse of both the shear to normal stress ratio and the solid volume fraction over a wide range of inertial numbers. Contrary to expectations, the effect of the interstitial fluid on the granular rheology is shown to be negligible, supporting recent work suggesting the absence of a clear transition between the free-fall and turbulent regime. In addition, data collapse is observed up to unexpectedly high inertial numbers I ∼ 2, challenging the existing conceptions and parametrization of the µ(I) rheology. Focusing upon bedload transport modelling, the results are pragmatically analyzed in the µ(I) framework in order to propose a granular rheology for bedload transport. The proposed rheology is tested using a 1D volume-averaged two-phase continuous model, and is shown to accurately reproduce the dense granular flow profiles and the sediment transport rate over a wide range of Shields numbers. The present contribution represents a step in the upscaling process from particle-scale simulations toward large-scale applications involving complex flow geometry.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...