Vers un apprentissage multi-label rapide en grande dimension – Une étude préliminaire - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Vers un apprentissage multi-label rapide en grande dimension – Une étude préliminaire

Résumé

Des besoins actuels orientent la recherche en apprentissage multi-label interactif vers l'intégration d'un très grand nombre de variables à la fois en entrée et en sortie. Pour s'adapter à ce cadre, nous nous intéressons particulièrement à des algorithmes qui apprennent par l'intermédiaire d'une réduction de dimension. Dans cette étude, nous en comparons expérimentalement trois (SSI, CCA et Gravity) sur des données réelles et des données synthétiques engendrées pour tester leur capacité à extraire les informations pertinentes, leur tenue de charge et leur prise en compte d'un contexte très simple.
Fichier principal
Vignette du fichier
Resumé_apprentissage_multilabel_grande_dimension_SIBLINI_KUNTZ_MEYER_final.pdf (375.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01396873 , version 1 (15-11-2016)

Identifiants

  • HAL Id : hal-01396873 , version 1

Citer

Wissam Siblini, Pascale Kuntz, Frank Meyer. Vers un apprentissage multi-label rapide en grande dimension – Une étude préliminaire. Conférence AAFD & SFC 2016, May 2016, Marrakech, Maroc. ⟨hal-01396873⟩
155 Consultations
100 Téléchargements

Partager

More