Chromatic polynomials and bialgebras of graphs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Chromatic polynomials and bialgebras of graphs

Résumé

The chromatic polynomial is characterized as the unique polynomial invariant of graphs, compatible with two interacting bialgebras structures: the first coproduct is given by partitions of vertices into two parts, the second one by a contraction-extraction process. This gives Hopf-algebraic proofs of Rota's result on the signs of coefficients of chromatic polynomials and of Stanley's interpretation of the values at negative integers of chromatic polynomi-als. We also give non-commutative version of this construction, replacing graphs by indexed graphs and Q[X] by the Hopf algebra WSym of set partitions.
Fichier principal
Vignette du fichier
chromatiques_v2.pdf (274.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01396199 , version 1 (14-11-2016)
hal-01396199 , version 2 (29-11-2016)
hal-01396199 , version 3 (30-04-2021)

Identifiants

Citer

Loïc Foissy. Chromatic polynomials and bialgebras of graphs. 2016. ⟨hal-01396199v1⟩
131 Consultations
153 Téléchargements

Altmetric

Partager

More