Scattering problems in elastodynamics - Archive ouverte HAL
Article Dans Une Revue Physical Review B: Condensed Matter and Materials Physics (1998-2015) Année : 2016

Scattering problems in elastodynamics

Andre Diatta
  • Fonction : Auteur
Muamer Kadic
Sebastien Guenneau

Résumé

In electromagnetism, acoustics, and quantum mechanics, scattering problems can routinely be solved numerically by virtue of perfectly matched layers (PMLs) at simulation domain boundaries. Unfortunately, the same has not been possible for general elastodynamic wave problems in continuum mechanics. In this Rapid Communication, we introduce a corresponding scattered-field formulation for the Navier equation. We derive PMLs based on complex-valued coordinate transformations leading to Cosserat elasticity-tensor distributions not obeying the minor symmetries. These layers are shown to work in two dimensions, for all polarizations, and all directions. By adaptative choice of the decay length, the deep subwavelength PMLs can be used all the way to the quasistatic regime. As demanding examples, we study the effectiveness of cylindrical elastodynamic cloaks of the Cosserat type and approximations thereof.
Fichier principal
Vignette du fichier
1609.09346.pdf (1.04 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01395829 , version 1 (21-09-2023)

Identifiants

Citer

Andre Diatta, Muamer Kadic, Martin Wegener, Sebastien Guenneau. Scattering problems in elastodynamics. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2016, 94 (10), pp.100105. ⟨10.1103/PhysRevB.94.100105⟩. ⟨hal-01395829⟩
99 Consultations
29 Téléchargements

Altmetric

Partager

More