The Number of Holes in the Union of Translates of a Convex Set in Three Dimensions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

The Number of Holes in the Union of Translates of a Convex Set in Three Dimensions

Résumé

We show that the union of n translates of a convex body in R3 can have Θ(n3) holes in the worst case, where a hole in a set X is a connected component of R3\X. This refutes a 20-year-old conjecture. As a consequence, we also obtain improved lower bounds on the complexity of motion planning problems and of Voronoi diagrams with convex distance functions.
Fichier principal
Vignette du fichier
LIPIcs-SoCG-2016-10.pdf (605.32 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01393017 , version 1 (05-11-2016)

Licence

Identifiants

  • HAL Id : hal-01393017 , version 1

Citer

Boris Aronov, Otfried Cheong, Michael Gene Dobbins, Xavier Goaoc. The Number of Holes in the Union of Translates of a Convex Set in Three Dimensions. SoCG 2016, Jun 2016, Boston, United States. pp.10:1-10:16. ⟨hal-01393017⟩
205 Consultations
194 Téléchargements

Partager

More