Combined models for topic spotting and topic-dependent language modeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 1997

Combined models for topic spotting and topic-dependent language modeling

Brigitte Bigi
Marc El-Bèze
  • Fonction : Auteur
Thierry Spriet
  • Fonction : Auteur

Résumé

A new statistical method for Language Modeling and spoken document classification is proposed. It is based on a mixture of topic dependent probabilities. Each topic dependent probability is in turn a mixture of n-gram probabilities and the probability of Kullback-Lieber (KL) distances between keyword unigrams and distribution obtained from the content of a cache memory. Experimental result on topic classification using a corpus of 60 Mword from the French newspaper Le Monde show the excellent performance of the cache memory and its complementary role in providing different statistics for the decision process.
Fichier principal
Vignette du fichier
bigi1997asru.pdf (224.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01392216 , version 1 (04-11-2016)

Identifiants

Citer

Brigitte Bigi, Renato de Mori, Marc El-Bèze, Thierry Spriet. Combined models for topic spotting and topic-dependent language modeling. IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings, 1997, Santa Barbara, United States. pp.535 - 542, ⟨10.1109/ASRU.1997.659133⟩. ⟨hal-01392216⟩

Collections

UNIV-AVIGNON LIA
74 Consultations
144 Téléchargements

Altmetric

Partager

More