A nonlinear consistent penalty method weakly enforcing positivity in the finite element approximation of the transport equation - Archive ouverte HAL
Article Dans Une Revue Computer Methods in Applied Mechanics and Engineering Année : 2017

A nonlinear consistent penalty method weakly enforcing positivity in the finite element approximation of the transport equation

Résumé

We devise and analyze a new stabilized finite element method to solve the first-order transport (or advection–reaction) equation. The method combines the usual Galerkin/Least-Squares approach to achieve stability with a nonlinear consistent penalty term inspired by recent discretizations of contact problems to weakly enforce a positivity condition on the discrete solution. We prove the existence and the uniqueness of the discrete solution. Then we establish quasi-optimal error estimates for smooth solutions bounding the usual error terms in the Galerkin/Least-Squares error analysis together with the violation of the maximum principle by the discrete solution. Numerical examples are presented to illustrate the performances of the method.
Fichier principal
Vignette du fichier
cmame_rev1_hal.pdf (345.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01383295 , version 1 (18-10-2016)
hal-01383295 , version 2 (24-11-2017)

Identifiants

Citer

Erik Burman, Alexandre Ern. A nonlinear consistent penalty method weakly enforcing positivity in the finite element approximation of the transport equation. Computer Methods in Applied Mechanics and Engineering, 2017, 320, pp.122-132. ⟨10.1016/j.cma.2017.03.019⟩. ⟨hal-01383295v2⟩
529 Consultations
679 Téléchargements

Altmetric

Partager

More