Inference and parameter estimation on hierarchical belief networks for image segmentation - Archive ouverte HAL
Article Dans Une Revue Neurocomputing Année : 2010

Inference and parameter estimation on hierarchical belief networks for image segmentation

Résumé

We introduce a new causal hierarchical belief network for image segmentation. Contrary to classical tree structured (or pyramidal) models, the factor graph of the network contains cycles. Each level of the hierarchical structure features the same number of sites as the base level and each site on a given level has several neighbors on the parent level. Compared to tree structured models, the (spatial) random process on the base level of the model is stationary which avoids known drawbacks, namely visual artifacts in the segmented image. We propose different parameterizations of the conditional probability distributions governing the transitions between the image levels. A parametric distribution depending on a single parameter allows the design of a fast inference algorithm on graph cuts, whereas for arbitrary distributions, we propose inference with loopy belief propagation. The method is evaluated on scanned document images from the 18th century, showing an improvement of character recognition results compared to other methods.
Fichier principal
Vignette du fichier
Liris-4315.pdf (4.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01381436 , version 1 (06-03-2017)

Identifiants

Citer

Christian Wolf, Gérald Gavin. Inference and parameter estimation on hierarchical belief networks for image segmentation. Neurocomputing, 2010, 4-6, 73, pp.563-569. ⟨10.1016/j.neucom.2009.07.017⟩. ⟨hal-01381436⟩
165 Consultations
100 Téléchargements

Altmetric

Partager

More