RNLp : Mixing Non-Local and TV-Lp methods to remove impulse noise from images - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Imaging and Vision Année : 2018

RNLp : Mixing Non-Local and TV-Lp methods to remove impulse noise from images

Résumé

We propose a new variational framework to remove random-valued impulse noise from images. This framework combines, in the same energy, a non-local $L^p$ data term and a total variation regularization term. The non-local $L^p$ term is a weighted $L^p$ distance between pixels, where the weights depend on a robust distance between patches centered at the pixels. In a first part, we study the theoretical properties of the proposed energy, and we show how it is related to classical denoising models for extreme choices of the parameters. In a second part, after having explained how to numerically find a minimizer of the energy thanks to primal-dual approaches, we show extensive denoising experiments on various images and noise intensities. The denoising performances of the proposed methods are on par with state of the art approaches, and the remarkable fact is that, unlike other successful variational approaches for impulse noise removal, they do not rely on a noise detector.
Fichier principal
Vignette du fichier
RNLp-final.pdf (14.31 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01381063 , version 3 (22-10-2018)

Identifiants

Citer

Julie Delon, Agnès Desolneux, Camille Sutour, Agathe Viano. RNLp : Mixing Non-Local and TV-Lp methods to remove impulse noise from images. Journal of Mathematical Imaging and Vision, 2018, ⟨10.1007/s10851-018-0856-3⟩. ⟨hal-01381063⟩
571 Consultations
630 Téléchargements

Altmetric

Partager

More