Journal Articles SIAM/ASA Journal on Uncertainty Quantification Year : 2017

On Shapley value for measuring importance of dependent inputs

Abstract

This paper makes the case for using Shapley value to quantify the importance of random input variables to a function. Alternatives based on the ANOVA decomposition can run into conceptual and computational problems when the input variables are dependent. Our main goal here is to show that Shapley value removes the conceptual problems. We do this with some simple examples where Shapley value leads to intuitively reasonable nearly closed form values.
Fichier principal
Vignette du fichier
shapleydependentR1bettergaus.pdf (321) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01379188 , version 1 (11-10-2016)
hal-01379188 , version 2 (15-03-2017)
hal-01379188 , version 3 (21-03-2017)

Identifiers

Cite

Art B Owen, Clémentine Prieur. On Shapley value for measuring importance of dependent inputs. SIAM/ASA Journal on Uncertainty Quantification, 2017, 51 (1), pp.986-1002. ⟨10.1137/16M1097717⟩. ⟨hal-01379188v3⟩
725 View
811 Download

Altmetric

Share

More