A Reduced Integration for Reissner-Mindlin Non-linear Shell Analysis Using T-Splines
Résumé
We propose a reduced shell element for Reissner-Mindlin geometric non-linear analysis within the context of T-spline analysis. The shell formulation is based on the displacements and a first order kinematic in the thickness is used for the transverse shear strains. A total Lagrangian formulation is considered for the finite transformations. The update of the incremental rotations is made using the quaternion algebra. The standard two-dimensional reduced quadrature rules for structured B-spline and NURBS basis functions are extended to the more flexible T-meshes. The non-uniform Gauss-Legendre and patchwise reduced integrations for quadratic shape functions are both presented and compared to the standard full Gauss-Legendre scheme. The performance of the element is assessed with linear and geometric non-linear two-dimensional problems in structural analysis. The effects of mesh distortion and local refinement, using both full and reduced numerical quadratures, are evaluated.