Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2018

Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces

Résumé

In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact that, in large time, the optimal state, control and adjoint vector remain most of the time close to an optimal steady-state. A similar statement holds true as well when replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov equations. We illustrate our results with examples including linear heat and wave equations with periodic tracking terms.
Fichier principal
Vignette du fichier
expturnpike.pdf (643.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01377320 , version 1 (06-10-2016)

Identifiants

  • HAL Id : hal-01377320 , version 1

Citer

Emmanuel Trélat, Can Zhang, Enrique Zuazua. Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces. SIAM Journal on Control and Optimization, 2018, 56 (2), pp.1222-1252. ⟨hal-01377320⟩
278 Consultations
245 Téléchargements

Partager

More