Coral reef fish detection and recognition in underwater videos by supervised machine learning : Comparison between Deep Learning and HOG+SVM methods - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Coral reef fish detection and recognition in underwater videos by supervised machine learning : Comparison between Deep Learning and HOG+SVM methods

Sébastien Villon
  • Fonction : Auteur
  • PersonId : 1414206
Marc Chaumont
Gérard Subsol

Résumé

In this paper, we present two supervised machine learning methods to automatically detect and recognize coral reef fishes in underwater HD videos. The first method relies on a traditional two-step approach: extraction of HOG features and use of a SVM classifier. The second method is based on Deep Learning. We compare the results of the two methods on real data and discuss their strengths and weaknesses.
Fichier principal
Vignette du fichier
ACIVS_2016_VILLON_CHAUMONT_SUBSOL_VILLEGER_CLAVERIE_MOUILLOT_Coral_Reef_Fish_Detection_and_Recognition.pdf (5.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01374123 , version 1 (29-09-2016)

Identifiants

  • HAL Id : hal-01374123 , version 1

Citer

Sébastien Villon, Marc Chaumont, Gérard Subsol, Sébastien Villéger, Thomas Claverie, et al.. Coral reef fish detection and recognition in underwater videos by supervised machine learning : Comparison between Deep Learning and HOG+SVM methods. ACIVS 2016 - 17th International Conference on Advanced Concepts for Intelligent Vision Systems, Oct 2016, Lecce, Italy. ⟨hal-01374123⟩
744 Consultations
1376 Téléchargements

Partager

More