A Neural Network Model for Solving the Feature Correspondence Problem
Résumé
Finding correspondences between image features is a fundamental question in computer vision. Many models in literature have proposed to view this as a graph matching problem whose solution can be approximated using optimization principles. In this paper, we propose a different treatment of this problem from a neural network perspective. We present a new model for matching features inspired by the architecture of a recently introduced neural network. We show that by using popular neural network principles like max-pooling, k-winners-take-all and iterative processing, we obtain a better accuracy at matching features in cluttered environments. The proposed solution is accompanied by an experimental evaluation and is compared to state-of-the-art models.