Volume of representations and birationality of peripheral holonomy
Abstract
We discuss here a generalization of a theorem by Dun-field stating that the peripheral holonomy map, from the character variety of a 3-manifold to the A-polynomial is birational. Dun-field's proof involves the rigidity of maximal volume. The volume is still an important ingredient in this paper. Unfortunately at this point no complete proof is done. Instead, a conjecture is stated about the volume function on the character variety that would imply the generalized birationality result. Some computational experimentations are described, which support the conjecture.
Domains
Geometric Topology [math.GT]
Origin : Files produced by the author(s)
Loading...