Transient Performance Analysis of Zero-Attracting LMS - Archive ouverte HAL
Article Dans Une Revue IEEE Signal Processing Letters Année : 2016

Transient Performance Analysis of Zero-Attracting LMS

Résumé

Zero-attracting least-mean-square (ZA-LMS) algorithm has been widely used for online sparse system identification. It combines the LMS framework and 1-norm regularization to promote sparsity, and relies on subgradient iterations. Despite the significant interest in ZA-LMS, few works analyzed its transient behavior. The main difficulty lies in the nonlinearity of the update rule. In this work, a detailed analysis in the mean and mean-square sense is carried out in order to examine the behavior of the algorithm. Simulation results illustrate the accuracy of the model and highlight its performance through comparisons with an existing model.
Fichier principal
Vignette du fichier
1608.07046v1.pdf (943.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01370271 , version 1 (22-09-2016)

Identifiants

Citer

Jie Chen, Cédric Richard, Yingying Song, David Brie. Transient Performance Analysis of Zero-Attracting LMS. IEEE Signal Processing Letters, 2016, 23 (12), pp.1786-1790. ⟨10.1109/LSP.2016.2616890⟩. ⟨hal-01370271⟩
279 Consultations
171 Téléchargements

Altmetric

Partager

More