Attributed Graph Rewriting for Complex Event Processing Self-Management
Résumé
The use of Complex Event Processing (CEP) and Stream Processing (SP) systems to process high-volume, high-velocity Big Data has renewed interest in procedures for managing these systems. In particular, self-management and adaptation of runtime platforms have been common research themes, as most of these systems run under dynamic conditions. Nevertheless, the research landscape in this area is still young and fragmented. Most research is performed in the context of specific systems, and it is difficult to generalize the results obtained to other contexts. To enable generic and reusable CEP/SP system management procedures and self-management policies, this research introduces the Attributed Graph Rewriting for Complex Event Processing Management (AGeCEP) formalism. AGeCEP represents queries in a language-and technology-agnostic fashion using attributed graphs. Query reconfiguration capabilities are expressed through standardized attributes, which are defined based on a novel classification of CEP query operators. By leveraging this representation, AGeCEP also proposes graph rewriting rules to define consistent reconfigurations of queries. To demonstrate AGeCEP feasibility, this research has used it to design an autonomic manager and to define a selected set of self-management policies. Finally, experiments demonstrate that AGeCEP can indeed be used to develop algorithms that can be integrated into diverse CEP systems.
Mots clés
Cloud computing
Theory of computation → Rewrite systems
Software and its engineering → Specialized application languages
graph rewriting
attributed graph
Complex event processing
Computer systems organization → Self-organizing autonomic computing
self-management
autonomic computing
Information systems → Data streaming
Origine | Publication financée par une institution |
---|
Loading...