A Fast Algorithm for Computing the Truncated Resultant - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

A Fast Algorithm for Computing the Truncated Resultant

Résumé

Let P and Q be two polynomials in K[x, y] with degree at most d, where K is a field. Denoting by R ∈ K[x] the resultant of P and Q with respect to y, we present an algorithm to compute R mod x^k in O˜(kd) arithmetic operations in K, where the O˜ notation indicates that we omit polylogarithmic factors. This is an improvement over state-of-the-art algorithms that require to compute R in O˜(d^3) operations before computing its first k coefficients.
Fichier principal
Vignette du fichier
resultant_series_draft.pdf (239.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01366386 , version 1 (14-09-2016)

Identifiants

Citer

Guillaume Moroz, Éric Schost. A Fast Algorithm for Computing the Truncated Resultant. ISSAC '16, Sergei A. Abramov; Eugene V. Zima, Jul 2016, Waterloo, Canada. pp.341-348, ⟨10.1145/2930889.2930931⟩. ⟨hal-01366386⟩
296 Consultations
339 Téléchargements

Altmetric

Partager

More