Determination of surfactant bio-sourced origin by isotope-ratio mass spectrometry
Résumé
RationaleTo develop more eco-friendly laundry detergents, renewable surfactants synthesized from vegetal sources are increasingly being used. In a more stringent regulation context, the determination of bio-sourced surfactant origin thus appears essential to assess the claims of detergent manufacturers. Radiocarbon determination, the standard method for the analysis of bio-sourced materials, is an expensive technique, so there is a need for a cheaper method.
MethodsHere, the use of an elemental analyzer linked to isotope-ratio mass spectrometry (EA/IRMS) is evaluated as an alternative approach to the official method. The O-18, C-13 and H-2 isotope-ratio values were determined to investigate the bio-sourced origin of surfactant raw materials and mixtures.
ResultsA sample library of 26 commercial surfactants representative of detergent raw materials was first analyzed by EA/IRMS. The O-18, C-13 and H-2 values allowed discrimination of synthetic and bio-sourced surfactants. Moreover, in this latter group, C4 plant-derived surfactants were distinguished by their C-13 values. Binary and ternary mixtures made of synthetic and bio-sourced surfactants were also analyzed and indicated a linear relationship between mixture isotope-ratio values and surfactant proportions.
ConclusionsIRMS represents a viable alternative to radiocarbon determination for the evaluation of surfactant bio-sourced origin. It is a faster and cheaper technique, allowing discrimination of petroleum- and biomass-derived surfactants and identification of their carbon sources (C4 or C3 plants)