Unmixing multitemporal hyperspectral images accounting for endmember variability - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

Unmixing multitemporal hyperspectral images accounting for endmember variability

Résumé

This paper proposes an unsupervised Bayesian algorithm for unmixing successive hyperspectral images while accounting for temporal and spatial variability of the endmembers. Each image pixel is modeled as a linear combination of the end-members weighted by their corresponding abundances. Spatial endmember variability is introduced by considering the normal compositional model that assumes variable endmembers for each image pixel. A prior enforcing a smooth temporal variation of both endmembers and abundances is considered. The proposed algorithm estimates the mean vectors and covariance matrices of the endmembers and the abundances associated with each image. Since the estimators are difficult to express in closed form, we propose to sample according to the posterior distribution of interest and use the generated samples to build estimators. The performance of the proposed Bayesian model and the corresponding estimation algorithm is evaluated by comparison with other unmixing algorithms on synthetic images.
Fichier principal
Vignette du fichier
halimi_15346.pdf (292.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01363316 , version 1 (09-09-2016)

Identifiants

  • HAL Id : hal-01363316 , version 1

Citer

Abderrahim Halimi, Nicolas Dobigeon, Jean-Yves Tourneret, Stephen Mclaughlin, Paul Honeine. Unmixing multitemporal hyperspectral images accounting for endmember variability. 23rd European Signal and Image Processing Conference (EUSIPCO 2015), Aug 2015, Nice, France. pp. 1686-1690. ⟨hal-01363316⟩
157 Consultations
92 Téléchargements

Partager

More