Uniform sampling in a structured branching population - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2019

Uniform sampling in a structured branching population

Résumé

We are interested in the dynamic of a structured branching population where the trait of each individual moves according to a Markov process. The rate of division of each individual is a function of its trait and when a branching event occurs, the trait of the descendants at birth depends on the trait of the mother and on the number of descendants. In this article, we explicitly describe the penalized Markov process, named auxiliary process, corresponding to the dynamic of the trait along the spine by giving its associated infinitesimal generator. We prove a Many-to-One formula and a Many-to-One formula for forks. Furthermore, we prove that this auxiliary process characterizes exactly the process of the trait of a uniformly sampled individual in the large population approximation. We detail three examples of growth-fragmentation models: the linear growth model, the exponential growth model and the parasite infection model.
Fichier principal
Vignette du fichier
tempsfixe_2308_final1.pdf (584.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01362366 , version 1 (19-09-2016)
hal-01362366 , version 2 (24-09-2017)
hal-01362366 , version 3 (07-03-2018)
hal-01362366 , version 4 (19-11-2018)

Identifiants

Citer

Aline Marguet. Uniform sampling in a structured branching population. Bernoulli, 2019, 25 (4A), pp.2649-2695. ⟨10.3150/18-BEJ1066⟩. ⟨hal-01362366v4⟩
396 Consultations
191 Téléchargements

Altmetric

Partager

More